15
CSCI 136: Spring 2017

Final Exam Study Guide May 9

Your final will be a “closed book” self-scheduled. From the registrar’s webpage), a self-scheduled exam:

may be taken starting with the Reading Period and may be picked up between the hours of 8:30 a.m. and
6:00 p.m. from the monitor in the Registrar’s Office on the second floor of Hopkins Hall, on any day
(including Saturday and Sunday) May 13 through May 21. Self-Scheduled exams must be returned to the
monitor within two and one-half hours after they are taken out. The last day for taking a self-scheduled
exam is Sunday, May 21st.

You are responsible for anything we covered in class or in lab, everything in the assigned reading from Java Struc-
tures, and the handouts/labs. The exam is cumulative, but it will heavily weight topics from the second half of the
course. However, we used arrays, Vectors, and Lists to implement many data structures; we used and big-O notation
to evaluate and compare data structures; we used recursion to traverse trees; etc.. The second half of the semester built
heavily on previous topics.

The following non-exhaustive list may be helpful in reminding you about some of the key topics we have covered:

o Pre-Midterm

Java syntax, as we have used it in our programming assignments.
Classes, abstract classes, and interfaces and their respective roles.
Information hiding (abstraction) and why it’s good.
Extending classes with inheritance.
Generic classes and their use
Pre- and post-conditions, and assertions.
The meaning of static (and non-static) as applied to variables and methods
Vector, its implementation in the structure5 package, and its methods.
Complexity: Big “O” definition.
* Determining the asymptotic behavior of mathematical functions

* Determining the time and space complexity for a given algorithm.
* Worst and best case analysis.

Linear and binary search.

Recursion and induction.

Sorting.
* Bubble sort, selection sort, insertion sort, merge sort, quicksort, heapsort.
* Using Comparator/Comparable for sorting.

Linked lists: Singly, Doubly, Circularly, and Chain-style list

e Post-midterm

Stacks (LIFO)

* List and Vector implementations
* Relationship with recursion and graph/tree traversals (DFS)


http://web.williams.edu/admin/registrar/exams/

Queues (FIFO)

x List, Vector, and fixed-size array implementations
* Relationship to graph/tree traversal strategies (BFS)

Priority queues

* OrderedVector Implementation

* Heap implementation
- heap property
- array representation and tree fullness/completeness
- heap insert/remove

Trees

* Array/Vector-based representation

* Recursively-defined, pointer-based representation

* Binary search trees

x Traversing trees (In-order, post-order, pre-order; Breadth-first, depth-first)
+ Tree (un)balance

Iterators

Bitwise operations

Graphs

* Directed/undirected
Weighted/unweighted
Adjacency List representation
Adjacency Matrix representation
Reachability/traversal (Breadth-first, depth-first)
Hashtables

* Hashing function

*
*
*
*

* Load factor
* Managing collisions (linear probing/external chaining)

Our goal is to test concepts, so it is not important to memorize the exact code or method signatures for every data
structure. Pseudo-code and descriptive variable/method names are enough to demonstrate understanding. However, it
is important to know the types of operations that different data structures do/do not support. For example, we cannot
access arbitrary elements in a queue: we can only add to the back and remove from the front.

Answers to odd-numbered book questions can be found in the appendix, and we have posted a sample exam on the
course webpage. Good luck!



