
Final Exam Study Guide
15

CSCI 136: Spring 2017
May 9

Your final will be a “closed book” self-scheduled. From the registrar’s webpage, a self-scheduled exam:

may be taken starting with the Reading Period and may be picked up between the hours of 8:30 a.m. and
6:00 p.m. from the monitor in the Registrar’s Office on the second floor of Hopkins Hall, on any day
(including Saturday and Sunday) May 13 through May 21. Self-Scheduled exams must be returned to the
monitor within two and one-half hours after they are taken out. The last day for taking a self-scheduled
exam is Sunday, May 21st.

You are responsible for anything we covered in class or in lab, everything in the assigned reading from Java Struc-
tures, and the handouts/labs. The exam is cumulative, but it will heavily weight topics from the second half of the
course. However, we used arrays, Vectors, and Lists to implement many data structures; we used and big-O notation
to evaluate and compare data structures; we used recursion to traverse trees; etc.. The second half of the semester built
heavily on previous topics.

The following non-exhaustive list may be helpful in reminding you about some of the key topics we have covered:

• Pre-Midterm

– Java syntax, as we have used it in our programming assignments.

– Classes, abstract classes, and interfaces and their respective roles.

– Information hiding (abstraction) and why it’s good.

– Extending classes with inheritance.

– Generic classes and their use

– Pre- and post-conditions, and assertions.

– The meaning of static (and non-static) as applied to variables and methods

– Vector, its implementation in the structure5 package, and its methods.

– Complexity: Big “O” definition.

∗ Determining the asymptotic behavior of mathematical functions
∗ Determining the time and space complexity for a given algorithm.
∗ Worst and best case analysis.

– Linear and binary search.

– Recursion and induction.

– Sorting.

∗ Bubble sort, selection sort, insertion sort, merge sort, quicksort, heapsort.
∗ Using Comparator/Comparable for sorting.

– Linked lists: Singly, Doubly, Circularly, and Chain-style list

• Post-midterm

– Stacks (LIFO)

∗ List and Vector implementations
∗ Relationship with recursion and graph/tree traversals (DFS)

1

http://web.williams.edu/admin/registrar/exams/


– Queues (FIFO)

∗ List, Vector, and fixed-size array implementations
∗ Relationship to graph/tree traversal strategies (BFS)

– Priority queues

∗ OrderedVector Implementation
∗ Heap implementation

· heap property
· array representation and tree fullness/completeness
· heap insert/remove

– Trees

∗ Array/Vector-based representation
∗ Recursively-defined, pointer-based representation
∗ Binary search trees
∗ Traversing trees (In-order, post-order, pre-order; Breadth-first, depth-first)
∗ Tree (un)balance

– Iterators

– Bitwise operations

– Graphs

∗ Directed/undirected
∗ Weighted/unweighted
∗ Adjacency List representation
∗ Adjacency Matrix representation
∗ Reachability/traversal (Breadth-first, depth-first)

– Hashtables

∗ Hashing function
∗ Load factor
∗ Managing collisions (linear probing/external chaining)

Our goal is to test concepts, so it is not important to memorize the exact code or method signatures for every data
structure. Pseudo-code and descriptive variable/method names are enough to demonstrate understanding. However, it
is important to know the types of operations that different data structures do/do not support. For example, we cannot
access arbitrary elements in a queue: we can only add to the back and remove from the front.

Answers to odd-numbered book questions can be found in the appendix, and we have posted a sample exam on the
course webpage. Good luck!

2


