Data Structures with Randomness:

Skip Lists
Flashback to Data Structures…

Recall the List interface

• What are the List operations?
 • What concrete List implementations did we study?
• What are the tradeoffs between arrays and linked lists?
• Do those tradeoffs change when our lists are sorted?
• How does this compare to a binary search tree?

Let’s develop a data structure with the strengths of a Binary Search Tree but the (relative) simplicity of a List
One Linked List

• Start from simplest data structure: (sorted) linked list
• Search cost?
 • $\Theta(n)$
• How can we improve it?
Two Linked Lists

• Suppose you instead had *two* sorted linked lists
 • Each list can contain a subset of the total elements
 • Elements can appear in one or both lists
• **Class exercise.** How can you use two lists to speed up searches?
Two Linked Lists

• **Idea**: we have both express and local subways
• Express lines connect a few main stations (and skip a bunch)
• Local lines connect all stations but are slow
• All express stops are also local stops so you can switch
Two Linked Lists

- **Search(x):**
 - Walk right in top linked list L_1 until going right would be too far
 - Walk down to bottom linked list L_2
 - Walk right in L_2 until x is found or reach end (report not found)
Two Linked Lists

- **Search**(66):
 - Walk right in top linked list L_1 until going right would be too far
 - Walk down to bottom linked list L_2
 - Walk right in L_2 until x is found or reach end (report not found)
Two Linked Lists

• How should we organize the two lists?
 • Which nodes go in L_1?
 • How much of gap to leave between L_1 elements?
 • **Best approach:** evenly space and promote elements

![Diagram showing two linked lists L_1 and L_2 with elements 14, 34, 42, 72, 14, 23, 34, 42, 50, 59, 66, 72, 79]
Two Linked Lists

- If gap between elements in top list is g, then the number of elements traversed (search cost) is at most $g + \frac{n}{g}$
- Optimized by setting $g = \sqrt{n}$
- So the search cost is at most $2\sqrt{n}$
More Linked Lists

- Search cost with two linked list: $2\sqrt{n}$
- Search cost with three linked list: $3n^{1/3}$
\(k \) Linked Lists

- Search cost with \(k \) linked lists: \(kn^{1/k} \)

- Search cost with \(\log n \) linked lists: \(\log n \cdot n^{1/\log n} \)

\[\log n \cdot n^{1/\log n} = 2 \log n \]
Insertion Cost

- This is good, but how can we insert?
- Every new element disrupts our spacing
- Idea: use randomness!
Acknowledgments

• Some of the material in these slides are taken from

 • Shikha Singh

 • Eric Demaine handout: https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf