Randomized Algorithm II
Randomized QuickSort
Randomized Quicksort

• Recall *deterministic* Quicksort

• Depending on the choice pivot, could be $O(n^2)$

• What if we pick the pivot uniformly at random?
 • We saw in randomized selection that this leads to good pivots half of the time

Quicksort(A):

If $|A| < 3$: Sort(A) directly
Else: choose a pivot element $p \leftarrow A$
 $A_{<p}, A_{>p} \leftarrow$ Partition around p
 Quicksort$(A_{<p})$
 Quicksort$(A_{>p})$
Randomized Quicksort

• Intuitively half the pivots will be good, half bad

• We will analyze quick sort using another accounting trick (see the textbook for example similar to selection’s approach of analyzing “phases”)

• Total work done can be split into to types:
 • Work done making recursive calls (this is a lower order term, it turns out)
 • Work partitioning the elements

• How many recursive calls in the worst case?
 • Imagine worst pivot being chosen each time
 • $O(n)$
Randomized Quicksort

- We thus need to bound the work partitioning elements
- Partitioning an array of size n around a pivot p takes exactly $n - 1$ comparisons
- We won't look at partitions made in each recursive call, which depend on the choice of random pivot
- **Idea:** Instead, account for the total work done by the partition step by summing up the total number of comparisons made
- Two ways to count total comparisons:
 - Look at the size of arrays across recursive calls and sum
 - Look at all pairs of elements and count total # of times they are compared (this is easier to do in this case)
Aside: Randomized Analysis

- Often multiple ways to determine a randomized algorithm’s cost
- We can split into phases, or count the cost directly. We can calculate each probability, or use linearity of expectation
- Intrinsically some “cleverness” involved in choosing the way that gets you a clean answer
- We’ll focus on problems where there’s a clear path to finding the solution (either it follows directly from the question, or we’ll revisit problems you’ve seen before). More complex problems abound if you look!
- That said, here’s a very clever way to calculate Quicksort’s running time
Counting Total Comparisons

- Just for analysis, let B denote the sorted version of input array A, that is, $B[i]$ is the i^{th} smallest element in A

- Define random variable X_{ij} as the number of times Quicksort compares $B[i]$ and $B[j]$

- Observation: $X_{ij} = 0$ or $X_{ij} = 1$, why?
 - $B[i], B[j]$ only compared when one of them is the current pivot; pivots are excluded from future recursive calls

- Let $T = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$ be the total number of comparisons made by randomized Quicksort
Expected Running Time

Goal: \(E[T] = E \left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \)

- \(E[X_{ij}] = \Pr[X_{ij} = 1] \)
- When is \(X_{ij} = 1 \)? That is, when are \(B[i] \) and \(B[j] \) compared?
- Consider a particular recursive call. Let rank of pivot \(p \) be \(r \).
 - Let's think about where \(B[i], B[j] \) lie with respect to \(p \)
Expected Running Time

Goal: \(E[T] = E \left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \)

- \(E[X_{ij}] = \Pr[X_{ij} = 1] \)
- When is \(X_{ij} = 1 \)? That is, when are \(B[i] \) and \(B[j] \) compared?
- Consider a particular recursive call. Let rank of pivot \(p \) be \(r \).
 - Case 1. One of them is the pivot: \(r = i \) or \(r = j \)
 - Case 2. Pivot is between them: \(r > i \) and \(r < j \)
 - Case 3. Both less than the pivot: \(r > i, j \)
 - Case 4. Both greater than the pivot: \(r < i, j \)
Comparisons for Each Case

- **Case 1.** $r = i$ or $r = j$
 - $B[i]$ and $B[j]$ are compared once and one of them is excluded from all future calls

- **Case 2.** $r > i$ and $r < j$
 - $B[i]$ and $B[j]$ are both compared to the pivot but not to each other, after which they are in different recursive calls: will never be compared again

- **Case 3.** $r > i, j$ and **Case 4.** $r < i, j$
 - $B[i]$ and $B[j]$ are not compared to each other, they are both in the same subarray and may be compared in the future

- **Takeaway:** $B[i], B[j]$ are compared for the 1st time when one of them is chosen as pivot from $B[i], B[i + 1], \ldots, B[j]$ & never again
Expected Running Time

- \(\Pr[X_{ij} = 1] = \Pr(\text{one of them is picked as pivot from } B[i], B[i+1], \ldots, B[j]) \)
- \(\Pr[X_{ij} = 1] = \frac{2}{j - i + 1} \)

\[
E[T] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] = 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j - i + 1}
\]
Expected Running Time

- \(B[i] \) and \(B[j] \) are compared iff one of them is the first pivot chosen from the range \(B[i], B[i + 1], \ldots, B[j] \)

- \(\Pr[X_{ij} = 1] = \frac{2}{j - i + 1} \)

- \(E[T] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] = 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j - i + 1} \)

- For fixed \(i \), inner sum is \(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n - i + 1} \leq \sum_{\ell=2}^{n} \frac{1}{\ell} = O(\log n) \)

- Thus, expected number of comparisons is:
 \(E[T] = O(n \log n) \)
Quick Sort Summary

• Las Vegas algorithms like Quicksort and Selection are always correct and their running time guarantees hold \textit{in expectation}.

• We can actually prove that the number of comparisons made by Quicksort is \(O(n \log n)\) \textbf{with high probability}.

 • W.H.P. means that the probability that the running time of quicksort is more than a constant \(c\) factor away from its expectation is very small (polynomially small: less than \(1/n^c\) for \(c \geq 1\)).

 • Whp bounds are called \textbf{concentration bounds}.

 • Whp: ideal guarantees possible for a randomized algorithm.
Acknowledgments

• Some of the material in these slides are taken from
 • Shikha Singh
 • Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)