Introduction to Probability
Random Variable

An event either does or does not happen. But what if we want to capture the magnitude of a probabilistic event?

- Suppose I flip n fair coins: the # of heads is a random variable
- Number that comes up when we roll a fair die is a random variable
- If an algorithm’s behavior is determined by “flipping some coins” then the running time of the algorithm is a random variable

- **Definition.** A random variable X is a function from a sample space S (with a probability measure) to some value set (e.g. real numbers, integers, etc.)
Random Variable: Example

- Suppose, for example, I flip a coin 10 times. Let X be the number of heads
 - $\Pr[X = 0] = 1/2^{10}$
 - $\Pr[X = 10] = 1/2^{10}$
 - $\Pr[X = 4]$?
 - $\Pr[X = 4] = \binom{10}{4} \frac{1}{2}^4 \frac{1}{2}^6 = \frac{105}{512}$
- A random variable that is 0 or 1 (indicating if something happens or not) is called an *indicator random variable* or *Bernoulli random variable*
Expectation

Every time you do the experiment, the associated random variable can take a different value

• How can we characterize the average behavior of a random variable?

• **Alternate Definition.** Expected value of a random variable \(R \) defined on a sample space \(S \) is

\[
E(R) = \sum_x x \cdot \Pr(R = x)
\]

• Let \(R \) be the number that comes up when we roll a fair, six-sided die, then the expected value of \(R \) is

\[
E(R) = \sum_{i=1}^{6} i \cdot \frac{1}{6} = \frac{1}{6} (1 + 2 + 3 + 4 + 5 + 6) = \frac{7}{2}
\]
Conditional Expectation

Definition. If \(A \) is an arbitrary event with \(\Pr[A] > 0 \), the conditional expectation of \(X \) given \(A \) is

\[
E[X | A] := \sum_x x \cdot \Pr[X = x | A]
\]

- **(Law of total expectation)** If \(\{A_1, A_2, \ldots\} \) is a finite partition of the sample space:

\[
E(X) = \sum_i E(X | A_i) \cdot \Pr(A_i)
\]

Very useful!
The linearity of expectation (LoE) is an important tool in randomized algorithms.

- The expected value operator for random variables is linear in the sense that:
 \[E[X + Y] = E[X] + E[Y] \]
 and, for any constant \(\alpha \),
 \[E[\alpha X] = \alpha E[X] \]

 - Informally, the expectation of a sum is the sum of the expectations.
 - Formally, for any random variables \(X_1, X_2, \ldots, X_n \) and any coefficients \(\alpha_1, \alpha_2, \ldots, \alpha_n \)

 \[
 E\left[\sum_{i=1}^{n} (\alpha_i \cdot X_i) \right] = \sum_{i=1}^{n} (\alpha_i \cdot E[X_i])
 \]

- **Note.** Always true! Linearity of expectation does not require independence of random variables.

Very useful!
Suppose you run an experiment with probability of success p and failure $1 - p$

- Example, coin toss where head is success and $\Pr(H) = p$

Let X be a Bernoulli or indicator random variable that is 1 if we succeed, and 0 otherwise. Then,

$$E[X] = \sum_x x \cdot \Pr[X = x]$$

$$= 0 \cdot \Pr[X = 0] + 1 \cdot \Pr[X = 1]$$

$$= p$$

Remember this: expectation of an indicator random variable is exactly the probability of success!
Consider n independent Bernoulli trials (with success probability p). Let R denote the number of successes.

- R is said to follow a Binomial distribution.

- We want to know expected number of successes $E(R)$.

- Can write R as a sum of indicator random variables:
 \[R = \sum_{i} R_i \quad \text{where} \quad R_i = 0 \quad \text{or} \quad R_i = 1 \]

Then $E[R] = E \left[\sum_{i} R_i \right]$.

How can we simplify this by Linearity of Expectation?
Expected Success: n Bernoulli Trials

- Consider n independent Bernoulli trials (with success probability p). Let R denote the number of successes
 - R is said to follow a Binomial distribution (we'll revisit this)
- We want to know expected number of successes $E(R)$
- Can write R as a sum of indicator random variables
 \[
 R = \sum_{i} R_i \quad \text{where } R_i = 0 \text{ or } R_i = 1
 \]

Then $E[R] = E \left[\sum_{i} R_i \right] = \sum_{i} E[R_i] = \sum_{i=1}^{n} p = np$
Uniform Distribution

With a uniform distribution, **every outcome is equally likely**

- Let X be the random variable of the experiment and S be the sample space

 - $\Pr[X = x] = \frac{1}{|S|}$

 - $E[X] = \sum_{x \in S} x \cdot \Pr(X = x) = \frac{1}{|S|} \cdot \sum_{x \in S} x$

- Example

 - fair coin toss: heads and tails are equally likely

 - fair die roll: all numbers are equally likely
Card Guessing: Memoryless

To entertain your family you have them shuffle deck of \(n \) cards and then turn over one card at a time. Before each card is turned, you predict its identity. Assume you have no psychic abilities and your memory is terrible—you can’t remember cards that have been seen.

- Your strategy: guess uniformly at random.
- How many predictions do you expect to be correct?

Let \(X \) denote the random variable equal to the # of correct guesses and \(X_i \) denote the indicator variable that the \(i^{th} \) guess is correct.

Thus, \(X = \sum_{i=1}^{n} X_i \) and \(E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] \)

- \(E[X_i] = 0 \cdot \Pr(X_i = 0) + 1 \cdot \Pr(X_i = 1) = \Pr(X_i = 1) = 1/n \)
- Thus, \(E[X] = 1 \)
Card Guessing: Memoryfull

(K&T 13.3)

- Suppose we play the same game but now assume you have the ability to remember cards that have already been turned.
- Your strategy: guess uniformly at random from among the cards that have not yet been turned over.
- Let X denote the random variable equal to the # of correct guesses and X_i denote the indicator variable that the i^{th} guess is correct.

Thus, $X = \sum_{i=1}^{n} X_i$ and $\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i]$.

- $\mathbb{E}[X_i] = \Pr(X_i = 1) = \frac{1}{n - i + 1}$
- Thus, $\mathbb{E}[X] = \sum_{i=1}^{n} \frac{1}{n - i + 1} = \sum_{i=1}^{n} \frac{1}{i}$

After we’ve seen i cards, we can rule out those i cards from our range of guesses.
Harmonic Numbers

- The n^{th} harmonic number, denoted H_n is defined as
 $$H_n = \sum_{i=1}^{n} \frac{1}{i}$$

- **Theorem.** $H_n = \Theta(\log n)$

- Proof Idea (we won’t show in full). Upper and lower bound area under the curve

\[H_n \leq 1 + \int_{1}^{n} \frac{dx}{x} = \ln n + 1 \]

\[H_n \geq \int_{0}^{n} \frac{dx}{x+1} = \ln(n+1) \]
Card Guessing: Memoryfull

(K&T 13.3)

- Suppose we play the same game but now assume you have the ability to remember cards that have already been turned.

- Your strategy: guess uniformly at random among cards that have not been turned over.

- Let X denote the r.v. equal to the number of correct predictions and X_i denote the indicator variable that the ith guess is correct.

 - Thus, $X = \sum_{i=1}^{n} X_i$ and $E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$.

 - $E[X_i] = \Pr(X_i = 1) = \frac{1}{n - i + 1}$.

 - Thus, $E[X] = \sum_{i=1}^{n} \frac{1}{n - i + 1} = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)$.
Acknowledgments

• Some of the material in these slides are taken from
 • Shikha Singh
 • Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)
 • Hamiltonian cycle reduction images from Michael Sipser’s Theory of Computation Book