Dynamic Programming III: Knapsack Problem
Admin

- Exam distributed after class Friday; can be taken in any 24 hour period **ending at 10.00 am Wednesday** (must be submitted by start of Wednesday’s class)
 - LaTeX template will be shared if you wish to use it
 - You may write by hand but must *clearly label answers*
 - The expectation is the same in either case: work out problem on scratch paper, write up final (clean) solution
- Friday we will meet upstairs
 - Activity to practice dynamic programming w.r.t. graphs
 - Also use Friday as a chance to ask questions about anything (including hw solutions)
Knapsack Problem

Further Reading: Chapter 6.4, KT
Knapsack Problem

Problem. Pack a knapsack to maximize the total item value

- There are \(n \) items, each with weight \(w_i \) and value \(v_i \):

\[
I = \{(v_1, w_1), \ldots, (v_n, w_n)\}
\]

- Knapsack has total capacity \(C \)

- For any set of items \(T \) they fit in the Knapsack iff

\[
\sum_{i \in T} w_i \leq C
\]

- **Goal:** Find subset \(S \) of items that fit in the knapsack (satisfy the capacity constraint) **and maximize** the total value:

\[
\sum_{i \in S} v_i
\]

- **Assumption.** All weights and values are non-negative integers
Let's first explore **greedy** solutions to the problem.

Consider the following problem instance:

- **Ideas for what to be greedy about?**

<table>
<thead>
<tr>
<th>i</th>
<th>v_i</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>$6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>$18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>$22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>$28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Knapsack instance

(weight limit $C = 11$ kg)
Idea 1: Pick the most expensive stuff we can!

- **Algorithm**: greedily pick the highest value item that fits.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>v_i</td>
<td>w_i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Total value: $35
Utilized capacity: 10 kg

Knapsack instance (weight limit $C = 11$ kg)

[Knapsack Problem](https://creativecommons.org/licenses/by-sa/2.5) by Dake
Idea 2: Pick the lightest stuff we can!

- **Algorithm**: greedily pick the lowest weight item that fits.

Knapsack instance
(weight limit $C = 11$ kg)

<table>
<thead>
<tr>
<th>i</th>
<th>v_i</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Total value: 25
Utilized capacity: 9 kg

Creative Commons Attribution-Share Alike 2.5 by Dake
Idea 1: Pick the most expensive stuff we can!

- **Algorithm**: greedily pick the highest weight item that fits.

Knapsack Problem

Total value: $35
Utilized capacity: 10 kg

<table>
<thead>
<tr>
<th>i</th>
<th>v_i</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Knapsack instance
(weight limit C = 11 kg)
Other ideas?

Spoiler: Greedy doesn’t work! What is optimal in this instance?

- Optimal packing is \(\{i_3, i_4\} \): value $40 (and weight 11)

How many packings must we consider in an **exhaustive** search?

<table>
<thead>
<tr>
<th>(i)</th>
<th>(v_i)</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>$6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>$18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>$22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>$28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

Knapsack instance
(weight limit \(W = 11 \))
Exponential Possibilities

Given S items, how many subsets of items are there in total?

- 2^S: there are an exponential number of possibilities

- Dynamic programming trades of space for time, and through memoization, we get an (interestingly) efficient solution!

<table>
<thead>
<tr>
<th>i</th>
<th>v_i</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 kg</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2 kg</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5 kg</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6 kg</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7 kg</td>
</tr>
</tbody>
</table>

knapsack instance
(weight limit $W = 11$)
Recipe for a Dynamic Program

- **Formulate the right subproblem.** The subproblem must have an optimal substructure
- **Formulate the recurrence.** Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- **State the base case(s).** The subproblem that's so small we know the answer to it immediately!
- **State the final answer.** (In terms of the subproblem)
- **Choose a memoization data structure.** Where are you going to store already computed results? (Usually a table)
- **Identify evaluation order.** Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- **Analyze space and running time.** As always!
Towards a Subproblem

Previously, our DP has tracked a value instead of a set.

- **Idea 1**: Keep track of current capacity

- **Subproblem**: Let $T[c]$ denote the value of the optimal solution that uses capacity $\leq c$.

- **Optimal solution**: $T[C]$

- **Recurrence**: Not obvious with just capacities.
 - Why is this a challenge?
Subproblems and Optimality

When items are selected, we need to fill the remaining capacity optimally

- **Challenge**: the subproblem associated with a given remaining capacity can be solved in different ways

 - In both cases, remaining capacity: 11 kg, but items left are different
 - Using just capacity might not be enough. Perhaps a 2D table can capture capacity AND items?
Subproblem: Optimal Substructure
Subproblem

OPT\((i, c)\): value of optimal solution using items \(\{1,2,\ldots,i\}\) with total capacity \(\leq c\), for \(1 \leq i \leq n\), \(0 \leq c \leq C\)

Final answer

OPT\((n, C)\)

Consider all \(n\) items, consider full capacity \(C\)
Base Cases

\(n \times C\): Are there any rows/columns can we fill immediately?

- What about the first column corresponding to item 1?

\(\text{OPT}(1, c)\): Value of optimal solution that uses item 1 and has total capacity at most \(c\)

- For \(i = 1; c \in \{1,2,\ldots,C\}\) we can fill out the first column as:

\[
\begin{align*}
\text{OPT}(1, c) &= v_1 \text{ if } c \geq w_1 \\
\text{OPT}(1, c) &= 0 \text{ if } c < w_1
\end{align*}
\]

Item 1 fits, add its value \(v_1\)

Item 1 does not fit, value of empty knapsack is 0
Base Cases

Are there any rows/columns can we fill immediately?

• What about the first row corresponding to capacity 0?

• $\text{OPT}(i, 0)$: Value of optimal solution that uses first i items and has total capacity at most 0

• For $i = 1, 2, \ldots, n$ we can fill out the first row as:

$$\text{OPT}(i, 0) = 0$$

Items 1\ldots i do not fit, value of empty knapsack is 0
Optimal Substructure

- **OPT**(i, c): Let us try to construct the optimal solution that uses items \{1,2,..., i\} and capacity at most c
- What are the possibilities for the last \(i^{th}\) item:
 - Either item \(i\) is in the optimal solution or not
 - We must consider both cases
- **Case 1.** Suppose item \(i\) is **not** in the optimal solution, what is the optimal way to solve the remaining problem?
 - \(\text{OPT}(i, c) = \text{OPT}(i - 1, c)\)
 - Item \(i\) is left out, use best solution that considers items 1\(\ldots\)(\(i - 1\)) for the same capacity
Optimal Substructure

- **OPT**(\(i, c\)): Let us try to construct the optimal solution that uses items \(\{1, 2, \ldots, i\}\) and capacity at most \(c\).

- What are the possibilities for the last \(i^{th}\) item:
 - Either item \(i\) is in the optimal solution or not
 - We must consider both cases

- **Case 2.** Suppose item \(i\) is in the optimal solution, what is the recurrence of the optimal solution?
 - \(\text{OPT}(i, c) = v_i + \text{OPT}(i - 1, c - w_i)\)
 - This case only possible if \(c \geq w_i\)
Final Recurrence

For $1 \leq i \leq n$ and $1 \leq c \leq C$, we have:

$$\text{OPT}(i, c) =$$

$$\max \{ \text{OPT}(i - 1, c), \; v_i + \text{OPT}(i - 1, c - w_i) \}$$

- **Memoization structure**: We store $\text{OPT}[i, c]$ values in a 2-D array or table using space $O(nC)$
- **Evaluation order**: In what order should we fill in the table?
 - Row-major order (row-by-row)
Running Time

- Time to fill out a single table cell? \(O(1) \)
- How many cells are there in our table? \(O(nC) \)
- Total cost? \(O(nC) \)
Running Time

• Is $O(nC)$ polynomial? By which I mean polynomial in the size of the input

• What is the input? n items, plus C
 • We need $O(n)$ size to store n items
 • How much space to store C? $\log_2 C$ bits

• Is $O(nC)$ polynomial?
 • Not polynomial in C, but polynomial in n
 • “Pseudopolynomial” - polynomial in the value of the input

• To think about: does this work if the weights are not integers?
Recipe for a Dynamic Program

• **Formulate the right subproblem.** The subproblem must have an optimal substructure

• **Formulate the recurrence.** Identify how the result of the smaller subproblems can lead to that of a larger subproblem

• **State the base case(s).** The subproblem thats so small we know the answer to it!

• **State the final answer.** (In terms of the subproblem)

• **Choose a memoization data structure.** Where are you going to store already computed results? (Usually a table)

• **Identify evaluation order.** Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order

• **Analyze space and running time.** As always!
Acknowledgments

Some of the material in these slides are taken from

- Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf)

- Shikha Singh