CSCI I36

Data Structures \&
 Advanced Programming

Lecture 8
Fall 2018
Instructors: Bills

Administrative Details

- Lab 3 Wednesday!
- You may work with a partner
- Come to lab with a plan!
- Try to answer questions before lab

Last Time

- Vector Implementation
- Miscellany: Wrappers
- Condition Checking
- Pre- and post-conditions, Assertions
- Asymptotic Growth \& Measuring Complexity

Today

- Measuring Growth
- Big-O
- Introduction to Recursion \& Induction

Function Growth

Consider the following functions, for $x \geq 1$

- $f(x)=1$
- $g(x)=\log _{2}(x) / /$ Reminder: if $x=2^{\wedge} n, \log _{2}(x)=n$
- $h(x)=x$
- $m(x)=x \log _{2}(x)$
- $\mathrm{n}(\mathrm{x})=\mathrm{x}^{2}$
- $p(x)=x^{3}$
- $r(x)=2^{x}$

Function Growth

Function Growth \& Big-O

- Rule of thumb: ignore multiplicative constants
- Examples:
- Treat n and $\mathrm{n} / 2$ as same order of magnitude
- $n^{2} / 1000,2 n^{2}$, and $1000 n^{2}$ are "pretty much" just n^{2}
- $a_{0} n^{k}+a_{1} n^{k-1}+a_{2} n^{k-2+\ldots} a_{k}$ is roughly n^{k}
- The key is to find the most significant or dominant term
- Ex: $\lim _{x \rightarrow \infty}\left(3 x^{4}-10 x^{3}-I\right) / x^{4}=3(W h y ?)$
- So $3 x^{4}-10 x^{3}-1$ grows "like" x^{4}

Asymptotic Bounds (Big-O Analysis)

- A function $f(n)$ is $O(g(n))$ if and only if there exist positive constants c and n_{0} such that

$$
|f(n)| \leq c \cdot g(n) \text { for all } n \geq n_{0}
$$

- g is "at least as big as" f for large \mathbf{n}
- Up to a multaplicative constant c!
- Example:
- $f(n)=n^{2} / 2$ is $O\left(n^{2}\right)$
- $f(n)=1000 n^{3}$ is $O\left(n^{3}\right)$
- $f(n)=n / 2$ is $O(n)$

Determining "Best" Upper Bounds

- We typically want the most conservative upper bound when we estimate running time
- And among those, the simplest
- Example: Let $\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{2}$
- $f(n)$ is $O\left(n^{2}\right)$
- $f(n)$ is $O\left(n^{3}\right)$
- $f(n)$ is $O\left(2^{n}\right)$ (see next slide)
- $f(n)$ is NOT O(n) (!!)
- "Best" upper bound is $O\left(n^{2}\right)$
- We care about \mathbf{c} and $\mathbf{n}_{\mathbf{0}}$ in practice, but focus on size of \mathbf{g} when designing algorithms and data structures

What's n_{0} ? Messy Functions

- Example: Let $f(n)=3 n^{2}-4 n+1$.
$\mathrm{f}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Well, $3 n^{2}-4 n+1 \leq \mathbf{3} \mathbf{n}^{2}+1 \leq \mathbf{4} n^{2}$, for $n \geq$ I
- So, for $\mathrm{c}=4$ and $\mathrm{n}_{0}=\mathrm{I}$, we satisfy Big-O definition
- Example: Let $f(n)=n^{k}$, for any fixed $k \geq$.
$f(n)$ is $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- Harder to show: Is $n^{k} \leq 2^{n}$ for some $\mathrm{c}>0$ and large enough n ?
- It is if and only if $\log _{2}\left(n^{k}\right) \leq \boldsymbol{l o g}_{2}\left(2^{n}\right)$, that is, iff $k \log _{2}(n) \leq \boldsymbol{n}$.
- That is iff $k \leq \boldsymbol{n} / \boldsymbol{l o g}_{2}(n)$. But $n / \log _{2}(n) \rightarrow \infty$ as $\boldsymbol{n} \rightarrow \infty$
- This implies that for some n_{0} on $n / \log _{2}(n) \geq \boldsymbol{K}$ if $\boldsymbol{n} \geq n_{0}$
- Thus $n \geq \mathbb{K} \log _{2}(n)$ for $n \geq n_{0}$ and so $2^{n} \geq n^{k}$

Vector Operations : Worst-Case

For $\mathrm{n}=$ Vector size (not capacity!):

- O(I): size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- $O(\mathrm{n})$: indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
- If Vector doesn't need to grow
- add(elt) is $\mathrm{O}(\mathrm{I})$ but add(elt, i$)$ is $\mathrm{O}(\mathrm{n})$
- Otherwise, depends on ensureCapacity() time
- Time to compute newLength : $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)$
- Assuming doubling rule!
- Time to copy array: $O(n)$
- $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)+\mathrm{O}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n})$

Vectors: Add Method Complexity

Suppose we grow the Vector's array by a fixed amount d. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
- At sizes 0, d, 2d, ... , n/d.
- Copying an array of size kd takes ckd steps for some constant c , giving a total of

$$
\sum_{k=1}^{n / d} c k d=c d \sum_{k=1}^{n / d} k=c d\left(\frac{n}{d}\right)\left(\frac{n}{d}+1\right) / 2=O\left(n^{2}\right)
$$

Vectors: Add Method Complexity

Suppose we grow the Vector's array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a power of 2
- At sizes $0, I, 2,4,8 \ldots 2^{\log _{2} n}$
- Copying an array of size 2^{k} takes c 2^{k} steps for some constant c , giving a total of

$$
\sum_{k=1}^{\log _{2} n} c 2^{k}=c \sum_{k=1}^{\log _{2} n} 2^{k}=c\left(2^{\log _{2} n+1}-1\right)=O(n)
$$

- Very cool!

Common Complexities

For $\mathrm{n}=$ measure of problem size:

- $\mathrm{O}(\mathrm{I})$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear dependence, simple list lookup
- $O(n \log n)$: divide and conquer sorting algorithms
- $O\left(n^{2}\right)$: matrix addition, selection sort
- $O\left(n^{3}\right)$: matrix multiplication
- $O\left(n^{\mathrm{k}}\right)$: cell phone switching algorithms
- $O\left(2^{n}\right)$: subset sum, graph 3-coloring, satisfiability, ...
- $\mathrm{O}(\mathrm{n}!)$: traveling salesman problem (in fact $\mathrm{O}\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)$)

Recursion

- General problem solving strategy
- Break problem into smaller pieces
- Sub-problems may look a lot like original - are often smaller versions of same problem

Recursion

- Many algorithms are recursive
- Can be easier to understand (and prove correctness/state efficiency of) than iterative versions
- Today we will review recursion and then talk about techniques for reasoning about recursive algorithms

Factorial

- $\mathrm{n}!=\mathrm{n} \bullet(\mathrm{n}-\mathrm{I}) \bullet(\mathrm{n}-2) \bullet \ldots \bullet \mathrm{l}$
- How can we implement this?
- We could use a for loop...

$$
\text { int product }=1 \text {; }
$$

for(int i = 1;i <= n; i++) product *= i;

- But we could also write it recursively....

Factorial

- $\mathrm{n}!=\mathrm{n} \bullet(\mathrm{n}-\mathrm{I}) \bullet(\mathrm{n}-2) \bullet \ldots \bullet \mathrm{l}$
- But we could also write it recursively
- $\mathrm{n}!=\mathrm{n} \bullet(\mathrm{n}-\mathrm{I})$!
- $0!=1$
// Pre: n >= 0
public static int fact(int n$)$ \{
if ($\mathrm{n}==0$) return 1 ;
else return n *fact($\mathrm{n}-1$);
\}

Factorial

fact(3)
$2^{*} I=2$

Factorial

- In recursion, we always use the same basic approach
- What' s our base case? [Sometimes "cases"]
- $\mathrm{n}=0$; $\operatorname{fact}(0)=1$
- What's the recursive relationship?
- $n>0 ;$ fact $(n)=n \bullet \operatorname{fact}(n-I)$

Fibonacci Numbers

- I, I, 2, 3, 5, 8, I $3, \ldots$
- Definition
- $\mathrm{F}_{0}=\mathrm{I}, \mathrm{F}_{1}=\mathrm{I}$
- For $\mathrm{n}>\mathrm{I}, \mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$
- Inherently recursive!
- It appears almost everywhere
- Growth: Populations, plant features
- Architecture
- Data Structures!

fib.java

```
public class fib{
    // pre: n is non-negative
        public static int fib(int n) {
        if (n==0 || n == 1) {
            return 1;
        }
        else {
            return fib(n - 1) + fib(n - 2);
        }
        }
```

 public static void main(String args[]) \{
 System. out. println(fib(Integer.valueOf(args[0]).intValue()));
 \}
 \}

Towers of Hanoi

- Demo
- Base case:
- One disk: Move from start to finish
- Recursive case (n disks):
- Move smallest n -I disks from start to temp
- Move bottom disk from start to finish
- Move smallest n -I disks from temp to finish
- Let's try to write it....

Longest Increasing Subsequence

- Given an array a[] of positive integers, find the largest subsequence of (not necessary consecutive) elements such that for any pair a[i], a[i] in the subsequence, if $\mathrm{i}<\mathrm{j}$, then $\mathrm{a}[\mathrm{i}]<\mathrm{a}[\mathrm{j}]$.
- Example 107 I2 35 II 89 I I5 has 3589 I5 as its longest increasing subsequence (LIS).
- How could we find an LIS of a[]?
- How could we prove our method was correct?
- Let's think....

Longest Increasing Subsequence

- (Brilliant) Observation: A LIS for a[I ... n] either contains a[I] ... or it doesn't.
- Therefore, a LIS for a[I ... n] either
- contains a[I] along with an LIS for $\mathrm{a}[2 \ldots \mathrm{n}]$ such that every element in the LIS is $>\mathrm{a}[\mathrm{I}]$, or
- Is a LIS for a[2 ... n]
- How could we find a LIS of a[]?
- Use the B.O. to build a recursive method
- How could we prove our method was correct?
- Induction!

Longest Increasing Subsequence

// Pre: curr <= length
public static int lisHelper(int[] arr, int curr, int maxSoFar) \{

$$
\begin{aligned}
& \text { if(curr }==\text { arr.length) return 0; } \\
& \text { if(arr[curr] <= maxSoFar) } \\
& \quad \text { return lisHelper(arr, curr + I,maxSoFar); }
\end{aligned}
$$

else
return Math.max(
lisHelper(arr,curr +1,maxSoFar),
I + lisHelper(arr, curr +I, arr[curr]));

Recursion Tradeoffs

- Advantages
- Often easier to construct recursive solution
- Code is usually cleaner
- Some problems do not have obvious nonrecursive solutions
- Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)
- E.g. recursive fibonacci method

