
CSCI 136
Data Structures &

Advanced Programming

Lecture 8
Fall 2018

Instructors: Bills

Administrative Details

• Lab 3 Wednesday!
• You may work with a partner
• Come to lab with a plan!
• Try to answer questions before lab

2

Last Time

• Vector Implementation
• Miscellany: Wrappers
• Condition Checking
• Pre- and post-conditions, Assertions

• Asymptotic Growth & Measuring Complexity

Today

• Measuring Growth
• Big-O

• Introduction to Recursion & Induction

Function Growth

�� ��

• �����
��

• �����
��������������������	�����
������������
��

• �����
��

• �����
����������

• �����
���

• �����
���

• �����
���

6

Function Growth

1

log2(x)

x

x log2(x)

x2

2x

2 4 6 8 10

-20

20

40

60

Function Growth & Big-O

• Rule of thumb: ignore multiplicative constants
• Examples:
• Treat n and n/2 as same order of magnitude
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

• a0nk + a1nk-1 + a2nk-2 + … ak is roughly nk

• The key is to find the most significant or
dominant term

• Ex: limx→∞ (3x4 -10x3 -1)/x4 = 3 (Why?)
• So 3x4 -10x3 -1 grows “like” x4

8

Asymptotic Bounds (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there
exist positive constants c and n0 such that

|f(n)| ≤ c· g(n) for all n ³ n0

• g is “at least as big as” f for large n
• Up to a multaplicative constant c!

• Example:
• f(n) = n2/2 is O(n2)
• f(n) = 1000n3 is O(n3)
• f(n) = n/2 is O(n)

9

Determining “Best” Upper Bounds

• We typically want the most conservative upper bound
when we estimate running time
• And among those, the simplest

• Example: Let f(n) = 3n2

• f(n) is O(n2)
• f(n) is O(n3)
• f(n) is O(2n) (see next slide)
• f(n) is NOT O(n) (!!)

• “Best” upper bound is O(n2)
• We care about c and n0 in practice, but focus on size

of g when designing algorithms and data structures
10

What’s n0? Messy Functions

• Example: Let f(n) = 3n2 - 4n +1. f(n) is O(n2)
• Well, 3n2 - 4n +1 ≤ 3n2 +1 ≤ 4n2, for n ≥ I
• So, for c = 4 and n0 = 1, we satisfy Big-O definition

• Example: Let f(n) = nk, for any fixed k ≥ 1. f(n) is
O(2n)
• Harder to show: Is nk ≤ c 2n for some c > 0 and large enough n?
• It is if and only if log2(nk) ≤ log2(2n), that is, iff k log2(n) ≤ n.
• That is iff k ≤ n/log2(n). But n/log2(n) à∞ as n à ∞
• This implies that for some n0 on n/log2(n) ≥ k if n ≥ n0

• Thus n ≥ k log2(n) for n ≥ n0 and so 2n ≥ nk

11

Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• O(1): size(), capacity(), isEmpty(), get(i), set(i),

firstElement(), lastElement()
• O(n): indexOf(), contains(), remove(elt), remove(i)
• What about add methods?

• If Vector doesn’t need to grow
• add(elt) is O(1) but add(elt, i) is O(n)

• Otherwise, depends on ensureCapacity() time
• Time to compute newLength : O(log2(n))

– Assuming doubling rule!

• Time to copy array: O(n)
• O(log2(n)) + O(n) is O(n)

13

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty Vector?
• The array will be copied each time its capacity needs to

exceed a multiple of d
• At sizes 0, d, 2d, … , n/d.

• Copying an array of size kd takes ckd steps for some
constant c, giving a total of
∑"#$%/' ()* = (* ∑"#$%/') = (* (%')(

%
' + 1)/2 = 1(23)

14

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?
• The array will be copied each time its capacity needs to

exceed a power of 2
• At sizes 0, 1, 2, 4, 8 … 2"#$% &

• Copying an array of size 2k takes c 2k steps for some
constant c, giving a total of

∑()*"#$% & +2(= + ∑()*"#$% & 2(= + (2"#$% &.*−1)= 2(3)
• Very cool!

15

Common Complexities
For n = measure of problem size:
• O(1): constant time and space
• O(log n): divide and conquer algorithms, binary search
• O(n): linear dependence, simple list lookup
• O(n log n): divide and conquer sorting algorithms
• O(n2): matrix addition, selection sort
• O(n3): matrix multiplication
• O(nk): cell phone switching algorithms
• O(2n): subset sum, graph 3-coloring, satisfiability, ...
• O(n!): traveling salesman problem (in fact O(n22n))

16

Recursion

• General problem solving strategy
• Break problem into smaller pieces
• Sub-problems may look a lot like original – are

often smaller versions of same problem

Recursion

• Many algorithms are recursive
• Can be easier to understand (and prove

correctness/state efficiency of) than iterative
versions

• Today we will review recursion and then talk
about techniques for reasoning about
recursive algorithms

Factorial

• n! = n • (n-1) • (n-2) • … • 1
• How can we implement this?
• We could use a for loop…

int product = 1;
for(int i = 1;i <= n; i++)

product *= i;
• But we could also write it recursively….

Factorial

• n! = n • (n-1) • (n-2) • … • 1
• But we could also write it recursively
• n! = n • (n-1)!
• 0! = 1

// Pre: n >= 0
public static int fact(int n) {

if (n==0) return 1;
else return n*fact(n-1);

}

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial

Factorial

• In recursion, we always use the same basic
approach

• What�s our base case? [Sometimes “cases”]
• n=0; fact(0) = 1

• What�s the recursive relationship?
• n>0; fact(n) = n • fact(n-1)

Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13, ...
• Definition
• F0 = 1, F1 = 1
• For n > 1, Fn = Fn-1 + Fn-2

• Inherently recursive!
• It appears almost everywhere
• Growth: Populations, plant features
• Architecture
• Data Structures!

fib.java
public class fib{

// pre: n is non-negative
public static int fib(int n) {

if (n==0 || n == 1) {
return 1;

}
else {

return fib(n – 1) + fib(n – 2);
}

}

public static void main(String args[]) {
System.out.println(fib(Integer.valueOf(args[0]).intValue()));

}

}

Towers of Hanoi

• Demo
• Base case:
• One disk: Move from start to finish

• Recursive case (n disks):
• Move smallest n-1 disks from start to temp
• Move bottom disk from start to finish
• Move smallest n-1 disks from temp to finish

• Let’s try to write it....

Longest Increasing Subsequence

• Given an array a[] of positive integers, find the largest
subsequence of (not necessary consecutive) elements
such that for any pair a[i], a[j] in the subsequence, if
i<j, then a[i] < a[j].

• Example 10 7 12 3 5 11 8 9 1 15 has 3 5 8 9 15 as its
longest increasing subsequence (LIS).

• How could we find an LIS of a[]?
• How could we prove our method was correct?
• Let’s think....

Longest Increasing Subsequence

• (Brilliant) Observation: A LIS for a[1 ... n] either
contains a[1] … or it doesn’t.

• Therefore, a LIS for a[1 ... n] either
• contains a[1] along with an LIS for a[2 ... n] such that every

element in the LIS is > a[1], or
• Is a LIS for a[2 ... n]

• How could we find a LIS of a[]?
• Use the B.O. to build a recursive method

• How could we prove our method was correct?
• Induction!

Longest Increasing Subsequence

// Pre: curr <= length
public static int lisHelper(int[] arr, int curr, int maxSoFar) {

if(curr == arr.length) return 0;
if(arr[curr] <= maxSoFar)

return lisHelper(arr, curr +1,maxSoFar);
else

return Math.max(

lisHelper(arr,curr +1,maxSoFar),
1 + lisHelper(arr, curr +1, arr[curr]));

}

Recursion Tradeoffs

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Overhead of recursive calls
• Can use lots of memory (need to store state for

each recursive call until base case is reached)
• E.g. recursive fibonacci method

