
CSCI 136
Data Structures &

Advanced Programming

Lecture 7
Fall 2018

Instructors: Bill & Bill

Last Time

• Associations

• Code Samples
• WordFreq, Dictionary (Associations, Vectors)

• Generic Data Types
• Lab 2 Design and Strategies

Today�s Outline

• Vector Implementation
• Miscellany: Wrappers
• Condition Checking
• Pre- and post-conditions, Assertions

• Asymptotic Growth & Measuring Complexity

Recall: Vectors

• Vectors are collections of Objects
• Methods include:

• add(Object o), remove(Object o)
• contains(Object o)
• indexOf(Object o)
• get(int index), set(int index, Object o)
• remove(int index)
• add(int index, Object o)
• size(), isEmpty()

• Remove methods preserve order, close “gap”

Implementing Vectors
(Parametrized)

• A Vector holds an array of Objects
• Key difference is that the number of elements

can grow and shrink dynamically
• How are they implemented in Java?
• What instance variables do we need?
• What methods? (start simple)

• We’ll focus on the generic version
• Let’s explore the implementation….

Class Vector : Instance Variables
public class Vector<E> {

private Object[] elementData; // Underlying array
protected int elementCount; // Number of elts in Vector

protected final static int defaultCapacity;
protected int capacityIncrement; // How much to grow by

protected E initialValue; // A default elt value

}

• Why Object[]?
• Java restriction: Can’t use type variable, only actual type

• Why elementCount?
• size won’t usually equal capacity

• Why capacityIncrement?
• We’ll “grow” the array as needed

Basic Vector<E> Methods
public class Vector<E> {
public Vector() // Make a small Vector
public Vector(int initCap) // Make Vector of given capacity
public void add(E elt) // Add elt to (high) end of Vector
public void add(int i, E elt) // Add elt at position i
public E remove(E elt) // Remove (and return) elt
public E remove(int i) // Remove (and return) elt at pos i
public int capacity() // Return capacity
public int size() // Return current size
public boolean isEmpty() // Is size == 0?
public boolean contains(E elt) // Is elt in Vector?
public E get(int i) // Return elt at position i
public E set(int i, E elt) // Change value at position i
public int indexOf(E elt) // Return earliest position of elt
}

Class Vector : Basic Methods

• Much work done by few methods:
• indexOf(E elt, int i) // find first occurrance of elt at/after pos. I

• Used by indexOf(E elt)
• remove methods use indexOf(E elt)

• firstElement(), lastElement() use get(int i)
• Principle: Factor out common code!

• Method names/functions in spirit of Java classes
• indexOf has same behavior as for Strings

• Methods are straightforward except when array is full

• How do we add to a full Vector?
• We make a new, larger array and copy values to it

Extending the Array

• How should we extend the array?
• Possible extension methods:
• Grow by fixed amount when capacity is reached
• Double array when capacity is reached

• How could we compare the two techniques?
• Run speed tests?

• Hardware/system dependent

• Count operations!
• We’ll do this soon

ensureCapacity
• How to implement ensureCapacity(int minCapacity)?

// post: the capacity of this vector is at least minCapacity
public void ensureCapacity(int minCapacity) {

if (elementData.length < minCapacity) {
int newLength = elementData.length; // initial guess
if (capacityIncrement == 0) {
// increment of 0 suggests doubling (default)

if (newLength == 0) newLength = 1;
while (newLength < minCapacity) {

newLength *= 2;
}

} else {
// increment != 0 suggests incremental increase

while (newLength < minCapacity) {
newLength += capacityIncrement;

}
}

// assertion: newLength > elementData.length.
Object newElementData[] = new Object[newLength];
int i;

// copy old data to array
for (i = 0; i < elementCount; i++) {

newElementData[i] = elementData[i];
}

elementData = newElementData;
// garbage collector will pick up old elementData

}
// assertion: capacity is at least minCapacity

}

Wrappers/AutoBoxing/Unboxing
• In Vector<E>, E cannot be a primitive type
• How to make a Vector of a primitive type?

• Java provides wrapper classes

• Examples:
• Vector<Integer>
• Association<String, Character>

• Each has a valueOf() method to return primitive

• Often Java will convert automatically
Association<String, Integer> a =

new Association<String, Integer>(”Bill”, 97);
int grade = a.getValue();

Wrappers/AutoBoxing/Unboxing

Primitive type Wrapper class
boolean Boolean

byte Byte

char Character

float Float

int Integer

long Long

short Short

double Double

Pre and Post Conditions

• Recall charAt(int index) in Java String class
• What are the pre-conditions for charAt?

• 0 <= index < length()

• What are the post-conditions?
• Method returns char at position index in string

• We put pre and post conditions in comments above
most methods

/* pre: 0 ≤ index < length
* post: returns char at position index
*/
public char charAt(int index) { … }

Pre and Post Conditions

• Pre and post conditions “form a contract”
• Principle: Ensure Post-condition is satisfied if pre-

condition is satisfied

• Examples:
• s.charAt(s.length() - 1): index < length, so valid
• s.charAt(s.length() + 1): index > length, not valid

• These conditions document requirements that
user of method should satisfy

• But, as comments, they are not enforced

Other Examples

• Other places pre and post conditions are useful

// Pre: other is of type Card
// Post: Returns true if suits and ranks match
public boolean equals(Object other) {

if (other instanceof Card) {
Card oc = (Card) other;
return this.getRank() == oc.getRank() &&

this.getSuit() == oc.getSuit();
}
else return false;

}

Assert Class

• Pre- and post-condition comments are useful
as a programmer, but it would be really helpful
to know as soon as a pre-condition is violated
(and return an error)

• The Assert class (in structure5 package)
allows us to programmatically check for pre-
and post-conditions

Assert Class

The Assert class contains the methods
public static void pre(boolean test, String message);
public static void post(boolean test, String message);
public static void condition(boolean test, String message);
public static void fail(String message);

If the boolean test is NOT satisfied, an exception is raised,
the message is printed and the program halts

Assert Example

• Let’s look in CardsWithBaileyAssert
// Pre: other is of type Card
// Post: Returns true if suits and ranks match
public boolean equals(Object other) {

Assert.pre(other instanceof Card,
"Error: parameter must implement

type Card");
Card oc = (Card) other;
return this.getRank() == oc.getRank() &&

this.getSuit() == oc.getSuit();
}

General Rules about Assert

1. State pre/post conditions in comments
2. Check conditions in code using “Assert”
3. Use Fail in unexpected cases (such as the

default block of a switch statement)

• Any questions?
• You should use Assertions in Lab 2

Measuring Computational Cost

Consider these two code fragments…
for (int i=0; i < arr.length; i++)

if (arr[i] == x) return “Found it!”;

…and…

for (int i=0; i < arr.length; i++)
for (int j=0; j < arr.length; j++)

if(i !=j && arr[i] == arr[j]) return ”Match!”;

How long does it take to execute each block?
22

Measuring Computational Cost

• How can we measure the amount of work
needed by a computation?
• Absolute clock time

• Problems?
– Different machines have different clocks
– Too much other stuff happening (network, OS, etc)
– Not consistent. Need lots of tests to predict

future behavior

23

Measuring Computational Cost

• Counting computations
• Count all computational steps?
• Count how many “expensive” operations were

performed?
• Count number of times “x” happens?

• For a specific event or action “x”
• i.e., How many times a certain variable changes

• Question: How accurate do we need to be?
• 64 vs 65? 100 vs 105? Does it really matter??

24

An Example
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly?
• ”if” makes it hard

• Idea: Overcount: assume “if” block always runs
• Overcounting gives upper bound on run time
• Can also undercount for lower bound

• Overcount: 4(n-1) + 4; undercount: 3(n-1) + 4

Measuring Computational Cost

• Rather than keeping exact counts, we want to
know the order of magnitude of occurrences
• 60 vs 600 vs 6000, not 65 vs 68
• n, not 4(n-1) + 4

• We want to make comparisons without
looking at details and without running tests

• Avoid using specific numbers or values
• Look for overall trends

26

Measuring Computational Cost

• How does algorithm scale with problem size?
• E.g.: If I double the size of the problem instance, how

much longer will it take to solve:
• Find maximum: n – 1 à (2n) – 1 (≈ twice as long)
• Bubble sort: n(n-1)/2 à 2n(2n – 1)/2 (≈ 4 times as long)
• Subset sum: 2n-1 à 22n-1 (2n times as long!!!)
• Etc.

• We will also measure amount of space used by an
algorithm using the same ideas….

27

