CSCI 136
Data Structures &
Advanced Programming

Lecture 7

Fall 2018
Instructors: Bill & Bill

Last Time

Associations

Code Samples

* WordFreq, Dictionary (Associations, Vectors)

Generic Data Types
Lab 2 Design and Strategies

Today s QOutline

Vector Implementation
Miscellany: Wrappers
Condition Checking

* Pre- and post-conditions, Assertions

Asymptotic Growth & Measuring Complexity

Recall: Vectors

* Vectors are collections of Objects
* Methods include:

add(Object o), remove(Object 0)

contains (Object 0)

indexOf (Object o)

get(int index), set(int index, Object o)
remove (i1nt index)

add(int index, Object o)

size(), 1sEmpty()

* Remove methods preserve order, close “gap”

Implementing Vectors
(Parametrized)

* A Vector holds an array of Objects

* Key difference is that the number of elements
can grow and shrink dynamically

* How are they implemented in Java?
* What instance variables do we need!?
* What methods!? (start simple)

* We'll focus on the generic version
* Let’s explore the implementation....

Class Vector : Instance Variables

public class Vector<gE> {

private Object[] elementData; // Underlying array
protected int elementCount; // Number of elts in Vector
protected final static int defaultCapacity;

protected int capacityIncrement; // How much to grow by
protected E initialValue; // A default elt value

}
 Why Obiject[]?

 Java restriction: Can’t use type variable, only actual type
* Why elementCount!

* size won't usually equal capacity

* Why capacitylncrement!?

e We'll “grow” the array as needed

public
public
public
public
public
public
public
public
public
public
public
public
public
public

Basic Vector<E> Methods

class Vector<gE> {

Vector () //
Vector(int initCap) //
void add(E elt) //
void add(int i, E elt)

E remove(E elt) //
E remove(int i) //
int capacity() //
int size() //
boolean isEmpty() //

Make a

small Vector

Make Vector of given capacity
Add elt to (high) end of Vector
// Add elt at position i

Remove
Remove
Return

Return

Is size

(and return) elt

(and return) elt at pos 1
capacity

current size

0?

boolean contains(E elt) // Is elt in Vector?

E get(int i) //
E set(int i, E elt) //
int indexOf(E elt) //

Return
Change

Return

elt at position 1
value at position i

earliest position of elt

Class Vector : Basic Methods

Much work done by few methods:

* indexOA(E elt, int i) // find first occurrance of elt at/after pos. |

e Used by indexOf(E elt)
e remove methods use indexOf(E elt)

e firstElement(), lastElement() use get(int i)
e Principle: Factor out common code!

Method names/functions in spirit of Java classes

* indexOf has same behavior as for Strings

Methods are straightforward except when array is full

How do we add to a full Vector?

* We make a new, larger array and copy values to it

Extending the Array

* How should we extend the array!?

* Possible extension methods:
* Grow by fixed amount when capacity is reached

* Double array when capacity is reached

* How could we compare the two techniques?

* Run speed tests!?
e Hardware/system dependent

e Count operations!
* We'll do this soon

ensureCapacity

How to implement ensureCapacity(int minCapacity)!?

// post: the capacity of this vector is at least minCapacity

public void ensureCapacity(int minCapacity) {
if (elementData.length < minCapacity) {

int newLength = elementData.length; // initial guess

if (capacityIncrement == 0) {
// increment of 0 suggests doubling (default)
if (newLength == 0) newLength = 1;

while (newLength < minCapacity) {
newLength *= 2;
}
} else {
// increment != 0 suggests incremental increase
while (newLength < minCapacity) {
newLength += capacityIncrement;

// assertion: newLength > elementData.length.
Object newElementData[] = new Object[newLength];

int i;

// copy old data to array
for (1 = 0; i < elementCount; i++) {
newElementData[i] = elementDatal[i];

elementData = newElementData;
// garbage collector will pick up old elementData
}

// assertion: capacity is at least minCapacity

Wrappers/AutoBoxing/Unboxing

In Vector<E>, E cannot be a primitive type
How to make a Vector of a primitive type!
Java provides wrapper classes

Examples:
* Vector<Integer>

* Association<String, Character>
Each has a valueOf() method to return primitive

Often Java will convert automatically

Association<String, Integer> a =
new Association<String, Integer>("Bill”, 97);
int grade = a.getValue();

Wrappers/AutoBoxing/Unboxing

Primitive type

Wrapper class

boolean Boolean
byte Byte

char Character
float Float

int Integer
long Long
short Short
double Double

Pre and Post Conditions

Recall charAt (int index) in Java String class

What are the pre-conditions for charAt?
e 0 <= index < length()
What are the post-conditions!?
* Method returns char at position index in string

We put pre and post conditions in comments above
most methods

/* pre: 0 = index < length

* post: returns char at position index
*/

public char charAt(int index) { .. }

Pre and Post Conditions

Pre and post conditions “form a contract”

Principle: Ensure Post-condition is satisfied if pre-
condition is satisfied

Examples:

e s.charAt(s.length() - 1): index < Iength, so valid

. s.charAt(s.length() + 1): index > length, not valid

These conditions document requirements that
user of method should satisfy

But, as comments, they are not enforced

Other Examples

Other places pre and post conditions are useful

// Pre: other is of type Card
// Post: Returns true i1if suits and ranks match

public boolean equals (Object other) {

1f (other instanceof Card) {
Card oc = (Card) other;
return this.getRank() == oc.getRank () &é&
this.getSuit () == oc.getSuit();

}

else return false;

Assert Class

* Pre- and post-condition comments are useful
as a programmer, but it would be really helpful
to know as soon as a pre-condition is violated
(and return an error)

* The Assert class (in structure5 package)
allows us to programmatically check for pre-

and post-conditions

Assert Class

The Assert class contains the methods

public static void pre(boolean test, String message);
public static void post(boolean test, String message);
public static void condition(boolean test, String message);

public static void fail(String message);

If the boolean test is NOT satisfied, an exception is raised,
the message is printed and the program halts

Assert Example

e Let’s look in CardsWithBaileyAssert
// Pre: other is of type Card

// Post: Returns true if suits and ranks match
public boolean equals(Object other) {
Assert.pre(other instanceof Card,

"Error: parameter must implement
type Card");

Card oc = (Card) other;
return this.getRank() == oc.getRank() &&
this.getSuit() == oc.getSuit();

General Rules about Assert

State pre/post conditions in comments
Check conditions in code using “Assert”

Use Fail in unexpected cases (such as the
default block of a switch statement)

Any questions?

You should use Assertions in Lab 2

Measuring Computational Cost

Consider these two code fragments...
for (int 1=0; 1 < arr.length; 1i++)

1f (arr[i] == x) return “Found 1t!”;
..and...

for (int 1=0; 1 < arr.length; 1i++)
for (int 3j=0; j < arr.length; Jj++)

1f(1 !'=7 && arr[1i] == arr([j]) return "“Match!”;

How long does it take to execute each block?

22

Measuring Computational Cost

* How can we measure the amount of work
needed by a computation!?

e Absolute clock time
* Problems?
— Different machines have different clocks
— Too much other stuff happening (network, OS, etc)

— Not consistent. Need lots of tests to predict
future behavior

23

Measuring Computational Cost

e Counting computations
e Count all computational steps!?

 Count how many “expensive” operations were
performed!?

e Count number of times “x” happens?

€€_.Y%

* For a specific event or action “x

* i.e,, How many times a certain variable changes

e Question: How accurate do we need to be!
* 64 vs 65! 100 vs 105! Does it really matter??

24

An Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)
if (arr[maxPos] < arr[i]) maxPos = 1i;

return maxPos;

* Can we count steps exactly!?

e ”if” makes it hard
* |dea: Overcount: assume “if’ block always runs
* Overcounting gives upper bound on run time
e Can also undercount for lower bound

e Overcount: 4(n-1) + 4; undercount: 3(n-1) + 4

Measuring Computational Cost

Rather than keeping exact counts, we want to

know the order of magnitude of occurrences
* 60 vs 600 vs 6000, not 65 vs 68
* n, not 4(n-1) + 4

We want to make comparisons without
looking at details and without running tests

Avoid using specific numbers or values

Look for overall trends

26

Measuring Computational Cost

* How does algorithm scale with problem size?

* E.g.: If | double the size of the problem instance, how
much longer will it take to solve:

e Find maximum: n— | = (2n) — | (= twice as long)
e Bubble sort: n(n-1)/2 = 2n(2n — 1)/2 (= 4 times as long)
e Subset sum: 2™! = 22" (2" times as long!!!)
* Etc.
* We will also measure amount of space used by an

algorithm using the same ideas....

27

