
CSCI 136
Data Structures &

Advanced Programming

Lecture 4
Fall 2018

Instructors: Bill Lenhart & Bill Jannen

Last Time

• Control structures
• Branching: if – else, switch, break, continue
• Looping: while, do – while, for, for – each

• Object oriented programming Basics (OOP)
• Strings and String methods

2

Today�s Outline

• More on Class Types

• Extending Classes & Abstract Classes

• Technique: Randomizing an array
• Miscellaneous Java
• Static variables and methods
• Memory management
• Access control: public, protected, private

3

Using Strings
• Application: Parsing an XML file of a CD collection

• XML = eXtensible Markup Language
• XML is used for many things
• CD info:

<CD>
<TITLE>Big Willie style</TITLE>
<ARTIST>Will Smith</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<YEAR>1997</YEAR>

</CD>

• How can we find and print just the titles?
• See CDTitles.java
• java CDTitles < cds.xml

4

Classes: An Extended Example

• Idea: Implement a class that describes a single
playing card (e.g., “Queen of Diamonds”)

• Start simple: a single class – BasicCard
• Think about alternative implementations
• Use an interface to allow implementation

independent coding
• Factor out common features using abstract

classes
• Use above to create a card deck
• Let’s look at BasicCard 5

Enum Types are Class Types
enum Rank { TWO, THREE, FOUR, FIVE, SIX, SEVEN,

EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE;

}

Notes
• Creates an ordered sequence of named constants
• Can find position of an enum value in sequence

• int i = r.ordinal(); // r is of type Rank

• Can get an array of all values in the enum
• Rank[] allRanks = Rank.values();

• Can use in for loops
• for (Rank r : Rank.values()) { ... }

• Can have its own instance variables and methods 6

7

Implementing a Card Object

• Think before we code!
• Many ways to implement a card
• An index from 0 to 51; a rank and a suit, ...

• Start general.
• Build an interface that advertises all public features

of a card
• Not an implementation (define methods, but don’t

include code)

• Then get specific.
• Build specific implementation of a card using our

general card interface

8

Start General: Card: An Interface

• What data do we have to represent?
• Properties of cards
• How can we represent these properties?

• There are often multiple options—name some!

• What methods do we need?
• Capabilities of cards

• Do we need accessor and/or mutator methods?

*

A Card Interface
public interface Card {

// Methods - must be public
public Suit getSuit();
public Rank getRank();

}

Notes
•It seems sketchy to allow a card to change its value

• Only make accessor methods

•We could make a tediously long enum for all 52 cards,
but we won’t

9

10

Get Specific: Card Implementations

• Now suppose we want to build a specific card
object

• We want to use the properties/capabilities
defined in our interface
• That is, we want to implement the interface

public class CardRankSuit implements Card {
. . .

}

The Enums for Cards
public enum Suit {

CLUBS, DIAMONDS, HEARTS, SPADES; // the values

public String toString() {

switch (this) {
case CLUBS : return "clubs";

case DIAMONDS : return "diamonds";

case HEARTS : return "hearts";

case SPADES : return "spades";

}
return "Bad suit!";

}

}

A similar declaration is defined for Rank 11

A First Card Implementation
public class CardSuitRank implements Card {
// instance variables

protected Suit suit;
protected Rank rank;

// Constructors
public CardSuitRank(Rank r, Suit s)

{suit = r; rank = s;}
// returns suit of card

public Suit getSuit() { return suit;}
// returns rank of card

public Rank getRank() { return rank;}
// create String representation of card

public String toString() {
return getRank() + " of " + getSuit();}

}
12

A Second Card Implementation
public class Card52 implements Card {
// instance variables

protected int code; // 0 <= code < 52;
// suit is code/13 and rank is code%13
// Constructors

public Card52(int index) {code = index;}
// returns suit of card

public Suit getSuit() {/* see sample code */}
// returns rank of card

public Rank getRank() {/* see sample code */}
// create String representation of card

public String toString() {
return getRank() + " of " + getSuit();

}
}

13

Improvements to Card52
Add back a constructor with Rank/Suit parameters
public class Card52v2 implements Card {
...

public Card52v2(Rank theRank, Suit theSuit) {
code = theSuit.ordinal() * 13 + theRank.ordinal();

}

Replace switch statements in “get” methods...
public Suit getSuit() {

return Suit.values()[code / 13];}
public Rank getRank() {

return Rank.values()[code % 13];}

...by using values() method to get array of enum values
Demo: PokerDeck.java

14

Interfaces: Worth Noting

• Interface methods are always public
• Java does not allow non-public methods in interfaces

• Interface instance variables are always static final
• static variables are shared across instances
• final variables are constants: they can’t change value

• Most classes contain constructors; interfaces do not!
• Can declare interface objects (just like class objects)

but cannot instantiate (“new”) them

15

