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Administrative Details
Reminders
•No lab this week
•Final exam

• Monday, December 17 at 9:30 in TPL 203
• Covers everything, with strong emphasis on post-midterm
• Study guide, sample exam will be posted on handouts page



Topics Covered

• Vectors (and arrays)
• Complexity (big O)
• Recursion + Induction
• Searching  
• Sorting
• Linked Lists (SLL & DLL)

• Stacks
• Queues  
• Iterators
• Bitwise operations

• Comparables/Comparators
• OrderedStructures
• Binary Trees
• Priority Queues
• Heaps               
• Binary Search Trees
• Graphs

• Maps/Hashtables



Last Time

• Graph applications (more in Ch 16)
• Prim’s algorithm for MCST
• Dijkstra’s Algorithm for shortest paths

• Single source



Today’s Outline

• Finish Dijkstra’s algorithm
• Maps
• Revisit Naïve implementation from Lab 2
• structure5.Hashtable (finally)

• Hash functions
• “Load factor”
• Collisions and how to handle them

• You should also read Ch 15 for more info



Single Source Shortest Paths
The Input: A graph G such that each edge has a 
positive cost and a starting vertex v.

The Output: For each vertex u ≠ v reachable 
from v, a shortest path Pu from v to u.

Graph can be directed or undirected

The method: Dijkstra’s Algorithm: Grow a tree



Finding the Best Vertex to Add to Tk

Not all edges are displayed

Question: Can we find the next closest vertex to s?



What’s a Good Greedy Choice?

Idea: Pick edge e from 
u in Tk to v in G-Tk that 
minimizes the length 
of the tree path from s 
up to–and through–e

Now add v and e to Tk
to get tree Tk+1

Now Tk+1 is a tree consisting of shortest paths from s to the 
k vertices closest to s!  [Proof?] Repeat!



Some Notation Reminders

• l(e) : length (weight) of edge e
• d(u,v) : distance from u to v

• Length of shortest path from u to v

• The priority queue stores an estimate of the distance from 
s to w by storing, for some edge (v,w), d(s,v) + l(v,w)

• The estimate is always an upper bound on d(s,w)



Dijkstra: What Do We Return?

• As we find a new vertex v to add to the tree T 
from some u in T, add info to a PQ and a Map.

• Precisely:
• Use a PQ of association(X,Y) edgeInfo where

• X is d(s,v) + l(v,w)
• Y is the edge e=(v,w)

• Add all edges from v to w, w not in T, to the PQ
• Add the key/value pair (v, u) to the Map

• So the map entry with key v tells us the vertex 
u that precedes v on shortest path from s to v



Dijkstra’s Algorithm
Dijkstra(G, s)  // l(e) is the length of edge e
let Tß({s}, ∅)  and PQ be an empty priority queue
for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all vertices of G and PQ is non-empty

repeat
e ß PQ.removeMin()   // skip edges with both ends in T

until  PQ is empty or e=(u,v) for u∈T, v ∉ T 
if  e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)



Dijkstra: Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue: O(|E|)
• Each edge takes up constant amount of space

• Map: O(|V|)
• Result: O(|V| + |E|)
• Optimal in Big-O sense!



Dijkstra : Time Complexity

Assume Map ops are O(1) time
Across all iterations of outer while loop
• Edges are added to and removed from the 

priority queue
• But any edge is added (and removed) at most 

once!
• Total PQ operation cost is O(|E| log |E|) time

• Which is O(|E| log |V|) time

• All other operations take constant time

• Thus time complexity is O(|E| log |V|)



Final Topic: Maps and Hashing



Map Interface

Methods for Map<K, V>
• int size() - returns number of entries in map
• boolean isEmpty() - true iff there are no entries
• boolean containsKey(K key) - true iff key exists in map
• boolean containsValue(V val) - true iff val exists at 

least once in map
• V get(K key) - get value associated with key
• V put(K key, V val) - insert mapping from key to val, 

returns value replaced (old value) or null
• V remove(K key) - remove mapping from key to val
• void clear() - remove all entries from map



Map Interface

Other methods for Map<K,V>:
•void putAll(Map<K,V> other) - puts all key-value pairs 
from Map other in map
•Set<K> keySet() - return set of keys in map
•Set<Association<K,V>> entrySet() - return set of key-
value pairs from map
•Structure<V> valueSet() - return set of values
•boolean equals() - used to compare two maps
•int hashCode() - returns hash code associated with values in 
map (stay tuned…)



public class Dictionary {

public static void main(String args[]) {
Map<String, String> dict = new Hashtable<String, String>();
…
dict.put(word, def);
…
System.out.println("Def: " + dict.get(word));

}

}

Dictionary.java

What’s missing from the Map API that a dictionary needs?

successor(key), predecessor(key)

Maps do NOT preserve order!



Simple Implementation: MapList

• Uses a SinglyLinkedList of Associations as underlying 
data structure
• Think back to Lab 2, but a List instead of a Vector

• How would we implement get(K key)?
• How would we implement put(K key, V val)?



MapList.java
public class MapList<K, V> implements Map<K, V>{

//instance variable to store all key-value pairs
SinglyLinkedList<Association<K,V>> data; 

public V put (K key, V value) {
Association<K,V> temp = 

new Association<K, V> (key, value);
// Association equals() just compares keys
Association<K,V> result = data.remove(temp);

data.addFirst(temp);
if (result == null)

return null;
else 

return result.getValue();
}

}



Simple Map Implementation

• What is MapList’s running time for:
• containsKey(K key)?
• containsValue(V val)?

• Bottom line: not O(1)!



Search/Locate Revisited

• How long does it take to search for objects in 
Vectors and Lists?
• O(n) on average

• How about in BSTs?
• O(log n)

• Can this be improved?
• Hash tables can locate objects in really quickly!

• (we will cover two reasons that O(1) performance is a fuzzy claim)



Example from Bailey

“We head to a local appliance store to pick up a new freezer. When we 
arrive, the clerk asks us for the last two digits of our home telephone 
number! Only then does the clerk ask for our last name. Armed with that 
information, the clerk walks directly to a bin in a warehouse of hundreds 
of appliances and comes back with the freezer in tow.”

• Thoughts?
•What is Key? What is Value?
•Are names evenly distributed?
•Are the last 2 phone digits evenly distributed?



Hashing in a Nutshell

• Assign objects to “bins” based on key
• When searching for object, go directly to 

appropriate bin (and ignore the rest)
• If there are multiple objects in bin, then search 

for the correct one
• Important Insight: Hashing works best when 

objects are evenly distributed among bins
• Phone numbers are randomly assigned, last names 

are not (there were a lot of Smiths in Smithsville!)



Implementing a HashTable

• How can we represent bins?
• Slots in array (or Vector, but arrays are faster)
• Initial size of array is a prime number

• How do we find a key’s bin number?
• We use a hash function that converts keys into 

integers 
• In Java, all Objects have public int hashCode()

• Hashing function is one way: key fingerprint

• Hashing function is deterministic



hashCode() rules

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()



Implementing HashTable

• How do we add Associations to the array?
• array[o.hashCode() % array.length] = o; ?

• What’s "aaaaaa".hashCode() ?

• Collisions make life hard
• Two approaches
• Open Addressing

• Linear or Quadratic Probing
• Double Hashing

• External chaining


