
CSCI 136
Data Structures &

Advanced Programming

Lecture 30
Fall 2018

Instructors: Bills are Back

2

Last Time

• Graph Data Structures: Implementation
• Adjacency Array Implementation Details

• GraphMatrix Abstract Base Class

3

Today�s Outline

• GraphMatrixDirected Implementation
• Greedy Algorithms for Optimization
• Lab 10 : Exam Scheduling
• Defining the problem
• Sketching a design

• Adjacency List Implementation Details
• More Fundamental Graph Properties
• An Important Algorithm: Minimum-cost

spanning subgraph

4

GraphMatrixDirected

• Completes the implementation of
GraphMatrix to ensure graph is directed

• GraphMatrixUndirected is very similar…
• How do we implement GraphMatrixDirected?
• We’ll discuss some methods
• Read Ch 16 for complete details…

5

GraphMatrixDirected

• Constructor
public GraphMatrixDirected(int size) {

// pre: size > 0
// post: constructs an empty graph that may be
// expanded to at most size vertices. Graph
// is directed if dir true and undirected
// otherwise

// call GraphMatrix constructor
super(size,true);

}

6

GraphMatrixDirected

• addEdge
// pre: vLabel1 and vLabel2 are labels of existing vertices
public void addEdge(V vLabel1, V vLabel2, E label) {

GraphMatrixVertex<V> vtx1,vtx2;
vtx1 = dict.get(vLabel1);
vtx2 = dict.get(vLabel2);
Edge<V,E> e = new Edge<V,E>(vtx1.label(), vtx2.label(),

label, true);
data[vtx1.index()][vtx2.index()] = e;

}

7

GraphMatrixDirected

• removeEdge
// pre: vLabel1 and vLabel2 are labels of existing vertices
public E removeEdge(V vLabel1, Vlabel2) {

// get indices
int row = dict.get(vLabel1).index();
int col = dict.get(vLabel2).index();
// cache old value
Edge<V,E> e = (Edge<V,E>)data[row][col];
// update matrix
data[row][col] = null;
if (e == null) return null;
else return e.label(); // return old value

}

8

GraphMatrix Efficiency

• Assume Map operations are O(1) (for now)
• |E| = number of edges
• |V| = number of vertices

• Runtime of add, addEdge, getEdge, removeEdge,
remove?

• Space usage?
• Conclusions

• Matrix is good for dense graphs
• Have to commit to maximum # of vertices in advance

9

Efficiency : Assuming Fast Map
GraphMatrix

add O(1)

addEdge O(1)

getEdge O(1)

removeEdge O(1)

remove O(|V|)

space O(|V|2)

10

Lab 10 Overview:
Graph Algorithms using structure5

11

Greedy Algorithms

• A greedy algorithm attempts to find a globally optimum
solution to a problem by making locally optimum
(greedy) choices

• Example: Graph Coloring
• A (proper) coloring of a graph G = (V,E) is an

assignment of a value (color) to each vertex so that
adjacent vertices get different values (colors)

• Typically one strives to minimize the number of colors
used

12

Greedy Coloring

13

Greedy Coloring : Math

Here’s a greedy coloring algorithm
Build a collection C = {C1, …, Ck} of sets of vertices
i = 0; Ci = {} // empty set
while G is has more vertices

for each vertex u in G
if u is not adjacent to any vertex of Ci

remove u from G and add u to Ci
add Ci to C
i++;

Return C as the coloring

14

Greedy Coloring : CS

Here’s a greedy coloring algorithm
Create a structure C to hold a collection of lists
while G is not empty

pick a vertex v in G; create an empty list L; add v to L
for each vertex u ≠ v in G

if u is not adjacent to any vertex of L
add u to L

remove all vertices of L from G
add L to C

Return C as the coloring

15

Greedy Coloring

16

Greedy Coloring

Some observations
• Each list (color class) L is a set of vertices no two of

which are adjacent (an independent set)
• Each color class is maximal: cannot be made any larger

• The hope is that this results in fewer colors being needed
• But the solution is not always optimum!
• This is a very hard problem

• The coloring problem is the same as finding a partition of
the vertex set into independent sets
• Partition means union of disjoint sets

17

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that
• No student has two exams in the same slot
• Every course is in a slot
• The number of slots is as small as possible
This is just the graph coloring problem in disguise!
• Each course is a vertex
• Two vertices are adjacent if the courses share students

• A slot must be an independent set of vertices (that is, a
color class)

18

Lab 10 Notes: Using Graphs

• Create a new graph in structure5
• GraphListDirected, GraphListUndirected,
• GraphMatrixDirected, GraphMatrixUndirected

• Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

19

Lab 10 : Useful Graph Methods
• void add(V label)

• add vertex to graph

• void addEdge(V vtx1, V vtx2, E label)
• add edge between vtx1 and vtx2

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors to vtx1

• boolean isEmpty()
• Returns true iff graph is empty

• Iterator<V> iterator()
• Get vertex iterator

• V remove(V label)
• Remove a vertex from the graph

• E removeEdge(V vLabel1, V vLabel2)
• Remove an edge from graph

20

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

21

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given
vertex

22

GraphList

• Maintain an adjacency list of edges at each
vertex (no adjacency matrix)
• Keep only outgoing edges for directed graphs

• Support both directed and undirected graphs
(GraphListDirected, GraphListUndirected)

23

Vertex and GraphListVertex
• We use the same Edge class for all graph types
• We extend Vertex to include an Edge list
• GraphListVertex class adds to Vertex class
• A Structure to store edges adjacent to the vertex

protected Structure<Edge<V,E>> adjacencies; // adjacent edges
– adjacencies is created as a SinglyLinkedList of edges

• Several methods
public void addEdge(Edge<V,E> e)
public boolean containsEdge(Edge<V,E> e)
public Edge<V,E> removeEdge(Edge<V,E> e)
public Edge<V,E> getEdge(Edge<V,E> e)
public int degree()
// and methods to produce Iterators...

24

GraphListVertex
public GraphListVertex(V key){

super(key); // init Vertex fields
adjacencies = new SinglyLinkedList<Edge<V,E>>();

}

public void addEdge(Edge<V,E> e){
if (!containsEdge(e)) adjacencies.add(e);

}

public boolean containsEdge(Edge<V,E> e){
return adjacencies.contains(e);

}

public Edge<V,E> removeEdge(Edge<V,E> e) {
return adjacencies.remove(e);

}

25

GraphListVertex Iterators
// Iterator for incident edges
public Iterator<Edge<V,E>> adjacentEdges() {

return adjacencies.iterator();
}

// Iterator for adjacent vertices
public Iterator<V> adjacentVertices() {

return new GraphListAIterator<V,E>
(adjacentEdges(), label());

}

GraphListAIterator creates an Iterator over vertices based on
the Iterator over edges produced by adjacentEdges()

26

GraphListAIterator

public GraphListAIterator(Iterator<Edge<V,E>> i, V v) {
edges = (AbstractIterator<Edge<V,E>>)i;
vertex = v;

}

public V next() {
Edge<V,E> e = edges.next();
if (vertex.equals(e.here()))

return e.there();
else { // could be an undirected edge!

return e.here();
}

GraphListAIterator uses two instance variables

protected AbstractIterator<Edge<V,E>> edges;
protected V vertex;

27

GraphListEIterator
GraphListEIterator uses one instance variable

protected AbstractIterator<Edge<V,E>> edges;

GraphListEIterator
•Takes the Map storing the vertices
•Uses it to build a linked list of all edges
•Gets an iterator for this linked list and stores it, using it in its own
methods

