CSCI 136

Data Structures \&
 Advanced Programming

Announcements

- I have office hours today from I:00-2:00pm

Last Time

- More on Graphs
- Applications and Problems
- Testing connectedness
- Counting connected components
- Breadth-first search
- Depth-first search
- And recursive depth-first search

Today's Outline

- Recursive Depth First Search
- Why it works
- Directed Graphs
- Definition and Properties
- Reachability and (Strong) Connectedness
- Graph Data Structures: Implementation
- Graph Interface
- Adjacency Array Implementation Basic Concepts
- Adjacency List Implementation Basic Concepts
- Adjacency Array Implementation Details

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
$\operatorname{DFS}(G, v)$

$$
\begin{aligned}
& \text { Mark v as visited; count =1; } \\
& \text { for each unvisited neighbor uof v: } \\
& \text { count }+=\operatorname{DFS}(G, u) \text {; }
\end{aligned}
$$

return count;
Is it even clear that this method does what we want?!
Let's prove some facts about it....

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v -Proof: Induction on length d of shortest path from v to w

- Base case: $\mathrm{d}=0$: Then $\mathrm{v}=\mathrm{w} \mathrm{V}$
- Ind. Hyp.: Assume DFS visits all vertices w of distance at most d from v (for some $d \geq \boldsymbol{\bullet}$).
- Ind. Step: Suppose now that w is distance $d+I$ from v. Consider a path of length $d+1$ from v to w and let u be the next-to-last vertex on the path

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

- Proof: Induction on length d of shortest path from v to w
- The path is $v=v_{0}, v_{1}, v_{2}, \ldots, v_{d}=u, v_{d+1}=w$
- The edges are implied so not explicitly written!
- By Ind. Hyp., u is visited. At this point, if whas not yet been visited, it will be one of the unvisited vertices on which DFS() is recursively called, so it will then be visited.

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v -Idea: Prove the following by induction on number of times DFS is called:
-DFS is only called on vertices w reachable from v
Claim: DFS counts correctly the number of vertices reachable from v

- Idea: Induction on number of unvisited vertices reachable from v
- DFS will never be called on same vertex twice

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited nodes reachable from v

Proof: Uses previous two observations

- DFS visits every node reachable from v
- DFS doesn't visit any node not reachable from v

What Exactly Does DFS Do?

- Given a graph $G=(V, E)$, a vertex v, let $X \subseteq$ V, where $v \notin X$.
- Assume X are exactly the vertices of V that have been marked as visited
- Claim: DFS(G,v) will visit exactly those vertices that are in the connected component of $G-X$ that contains v
- $G-X$ is the graph obtained by deleting the vertices of X-and edges using X-from G
- Prove by induction on $|V-X|$

Implementing Breadth-First Search

BFS(G, v) //Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited
// post: return number of visited vertices
count $\leftarrow 0$;
Create empty queue Q; enqueue v; mark v as visited; count ${ }^{++}$
While Q isn't empty
current \leftarrow Q.dequeue();
for each unvisited neighbor u of current:
add u to Q; mark u as visited; count++
return count;

Breadth-First Search

```
int BFS(Graph<V,E> g, V src) {
    Queue<V> todo = new QueueList<V>(); int count = 0;
    g.visit(src); count++;
    todo.enqueue(src);
    while (!todo.isEmpty()) {
        V node = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(node);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next)) {
                g.visit(next); count++;
                todo.enqueue(next);
            }
        }
    }
    return count;
}
```


Breadth-First Search of Edges

```
int BFS(Graph<V,E> g, V src) {
    Queue<V> todo = new QueueList<V>(); int count = 0;
    g.visit(src); count++;
    todo.enqueue(src);
    while (!todo.isEmpty()) {
        V node = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(node);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
            if (!g.isVisited(next)) {
                g.visit(next); count++;
                todo.enqueue(next);
            }
        }
    }
    return count;
}
```


Directed Graphs

Def'n: In a directed graph $G=(V, E)$, each edge e in E is an ordered pair: $e=(u, v)$ vertices: its incident vertices. The source of e is u; the destination/target is v .

Note: $(u, v) \neq(\mathrm{v}, \mathrm{u})$

Directed Graphs

- The (out) neighbors of B are D, G, H: B has outdegree 3
- The in neighbors of B are A, C: B has in-degree 2
- A has in-degree 0: it is a source in G; D has outdegree 0 : it is a sink in G

A walk is still an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

but now $e_{i}=\left(v_{i-1}, v_{i}\right)$: all edges point along direction of walk

Directed Graphs

- A, B, H, E, D is a walk from A to D
- It's also a (simple) path
- D, E, H, B, A is not a walk from D to A
- B, G, F, C, B is a (directed) cycle (it's a 4-cycle)
- So is H, E, H (a 2-cycle)

- D is reachable from A (via path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A

Directed Graphs

- A BFS of G from A visits every vertex
- A BFS of G from F visits all vertices but A
- A BFS of G from E visits only E, H, D

- Connectivity in directed graphs is more subtle than in undirected graphs!

Directed Graphs

- Vertices u and v are mutually reachable vertices if there are paths from u to v and v to u
- Maximal sets of mutually reachable vertices form the strongly connected components of G

Implementing Graphs

- Involves a number of implementation decisions, depending on intended uses
- What kinds of graphs will be availabe?
- Undirected, directed, mixed?
- What underlying data structures will be used?
- What functionality will be provided
- What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- We want to store information at vertices and at edges, but we favor vertices
- Let V and E represent the types of information held by vertices and edges respectively
- Interface Graph<V,E> extends Structure<V>
- Vertices are the building blocks; edges depend on them
- Type V holds a label for a (hidden) vertex type
- Type E holds a label for an (available) edge type
- Label: Application-specific data for a vertex/edge

Graphs in structure5

- The methods described in the Structure interface deal with vertices
- but also impact edges: e.g., clear()
- We'll want to add a number of similar methods to provide information about edges, and the graph itself

