
CSCI 136
Data Structures &

Advanced Programming

Lecture 28
Fall 2018

Instructors: Bill Bill

2

Announcements

• I have office hours today from 1:00-2:00pm

3

Last Time

• More on Graphs
• Applications and Problems

• Testing connectedness
• Counting connected components
• Breadth-first search
• Depth-first search

– And recursive depth-first search

4

Today�s Outline
• Recursive Depth First Search
• Why it works

• Directed Graphs
• Definition and Properties
• Reachability and (Strong) Connectedness

• Graph Data Structures: Implementation
• Graph Interface
• Adjacency Array Implementation Basic Concepts
• Adjacency List Implementation Basic Concepts
• Adjacency Array Implementation Details

5

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)

DFS(G, v)
Mark v as visited; count = 1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....

6

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
•Proof: Induction on length d of shortest path
from v to w
• Base case: d = 0: Then v = w ✓
• Ind. Hyp.: Assume DFS visits all vertices w of

distance at most d from v (for some d ≥ 0).
• Ind. Step: Suppose now that w is distance d+1

from v. Consider a path of length d+1 from v to w
and let u be the next-to-last vertex on the path

7

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
• Proof: Induction on length d of shortest path

from v to w
• The path is v = v0, v1, v2, ... , vd = u, vd+1 = w

• The edges are implied so not explicitly written!

• By Ind. Hyp., u is visited. At this point, if w has not
yet been visited, it will be one of the unvisited
vertices on which DFS() is recursively called, so it
will then be visited.

8

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v
•Idea: Prove the following by induction on
number of times DFS is called:
•DFS is only called on vertices w reachable from v

Claim: DFS counts correctly the number of
vertices reachable from v

• Idea: Induction on number of unvisited
vertices reachable from v
• DFS will never be called on same vertex twice

9

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited
nodes reachable from v
Proof: Uses previous two observations
• DFS visits every node reachable from v
• DFS doesn’t visit any node not reachable from v

10

What Exactly Does DFS Do?

• Given a graph G = (V, E), a vertex v, let X ⊆
V, where v ∉ X.

• Assume X are exactly the vertices of V that
have been marked as visited

• Claim: DFS(G,v) will visit exactly those
vertices that are in the connected component
of G – X that contains v
• G – X is the graph obtained by deleting the

vertices of X–and edges using X–from G
• Prove by induction on |V – X|

11

Implementing Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

12

Breadth-First Search
int BFS(Graph<V,E> g, V src) {

Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

13

Breadth-First Search of Edges
int BFS(Graph<V,E> g, V src) {

Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

14

Java
Data Structures

Organization

Discrete Math Theory
Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics
Linear Algebra

Directed Graphs

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the
destination/target is v.

Note: (u,v) ≠ (v,u)

15

Directed Graphs

• The (out) neighbors of B
are D, G, H: B has out-
degree 3

• The in neighbors of B are
A, C: B has in-degree 2

• A has in-degree 0: it is a
source in G; D has out-
degree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges
u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

but now ei = (vi-1,vi): all edges point along direction of walk

16

Directed Graphs

• A, B, H, E, D is a walk from
A to D

• It’s also a (simple) path
• D, E, H, B, A is not a walk

from D to A
• B, G, F, C, B is a (directed)

cycle (it’s a 4-cycle)
• So is H, E, H (a 2-cycle)

• D is reachable from A (via path A, B, D), but A is not
reachable from D

• In fact, every vertex is reachable from A

17

Directed Graphs

• A BFS of G from A visits
every vertex

• A BFS of G from F visits all
vertices but A

• A BFS of G from E visits
only E, H, D

• Connectivity in directed graphs is more subtle than in
undirected graphs!

18

Directed Graphs
• Vertices u and v are mutually

reachable vertices if there are
paths from u to v and v to u

• Maximal sets of mutually
reachable vertices form the
strongly connected
components of G

19

Implementing Graphs

• Involves a number of implementation
decisions, depending on intended uses
• What kinds of graphs will be availabe?

• Undirected, directed, mixed?

• What underlying data structures will be used?
• What functionality will be provided
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

20

Graphs in structure5

• We want to store information at vertices and at
edges, but we favor vertices
• Let V and E represent the types of information held

by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex type

• Type E holds a label for an (available) edge type
• Label: Application-specific data for a vertex/edge

21

Graphs in structure5

• The methods described in the Structure
interface deal with vertices
• but also impact edges: e.g., clear()

• We’ll want to add a number of similar
methods to provide information about edges,
and the graph itself

