CSCI 136

Data Structures \&
 Advanced Programming

Lecture 27
Fall 2018
Instructors: Bill

Last Time

- Introduction To Graphs
- Definitions and Properties: Undirected Graphs

Today's Outline

- More on Graphs
- Applications and Problems
- Testing connectedness
- Counting connected components
- Breadth-first and Depth-first search
- Directed Graphs
- Definition and Properties
- Reachability and (Strong) Connectedness
- Graph Data Structures: Preliminaries
- Graph Interface

Reachability and Connectedness

- Defn: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u iff u is reachable from v
- Defn: An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the connected component of v

Basic Graph Algorithms

- We'll look at a number of graph algorithms
- Connectedness: Is G connected?
- If not, how many connected components does G have?
- Cycle testing: Does G contain a cycle?
- Does G contain a cycle through a given vertex?
- If the edges of G have costs:
- What is the cheapest subgraph connecting all vertices
- Called a connected, spanning subgraph
- What is a cheapest path from u to v ?
- And more....

Operations on Graphs

- What are the basic operations we need to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v ? (degree of v)
- The vertices adjacent to v are called its neighbors
- Get a list of the vertices adjacent to v
- From which we can get the edges incident with v

Testing Connectedness

- How can we determine whether G is connected?
- Pick a vertex v ; see if every vertex u is reachable from v
- How could we do this?
- Visit the neighbors of v , then visit their neighbors, etc. See if we reach all vertices
- Assume we can mark a vertex as "visited"
- How do we manage all of this visiting?
- Let's try an example...

Reachability: Breadth-First Search

BFS(G,v) //Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow 0$;
Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty
current \leftarrow Q.dequeue();
for each unvisited neighbor u of current:
add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

BFS Reflections

- The BFS algorithm traced out a tree T_{v} : the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_{v} is called a BFS tree of G with root v (or from v)
- The vertices of T_{v} are visited in level-order
- This reveals a natural measure of distance between vertices: the length of (any) shortest path between the vertices

Distance in Undirected Graphs

Def: The distance between two vertices u and v in an undirected graph $G=(V, E)$ is the minimum of the path lengths over all u-v paths.

- It is the depth of u in T_{v} : a BFS tree from v
- We write it as $d(u, v)$. It satisfies the properties
- $d(u, u)=0$, for all $u \in V$
- $d(u, v)=d(v, u)$, for all $u, v \in V$
- $d(u, v) \leq \boldsymbol{d}(u, w)+d(w, v)$, for all $u, v, w \in V$
- This last property is call the triangle inequality

Reachability: Depth-First Search

$D F S(G, v) \quad / / D o$ a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count $\leftarrow 0$;
Create empty stack S; push v; mark v as visited; count++;
While Sisn't empty
current \leftarrow S.pop();
for each unvisited neighbor u of current:
add u to S; mark u as visited; count++
return count;

Now compare value returned from DFS(G,v) to size of V

DFS Reflections

- The DFS algorithm traced out a tree different from that produced by BFS
- It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
- It is called a DFS tree of G with root v (or from v)
- Vertices are processed in pre-order w.r.t. the tree
- By manipulating the stack differently, we could produce a post-order version of DFS
- And perhaps write DFS recursively....

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

$$
\begin{aligned}
& \text { Mark v as visited; count }=1 \text {; } \\
& \text { for each unvisited neighbor uof v: } \\
& \text { count }+=\operatorname{DFS}(G, u) \text {; }
\end{aligned}
$$

return count;
Is it even clear that this method does what we want?!
Let's prove some facts about it....

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v -Proof: Induction on length d of shortest path from v to w

- Base case: $\mathrm{d}=0$: Then $\mathrm{v}=\mathrm{w} \mathrm{V}$
- Ind. Hyp.: Assume DFS visits all vertices w of distance at most d from v (for some $d \geq \boldsymbol{\bullet}$).
- Ind. Step: Suppose now that w is distance $d+I$ from v. Consider a path of length $d+1$ from v to w and let u be the next-to-last vertex on the path

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

- Proof: Induction on length d of shortest path from v to w
- The path is $v=v_{0}, v_{1}, v_{2}, \ldots, v_{d}=u, v_{d+1}=w$
- The edges are implied so not explicitly written!
- By Ind. Hyp., u is visited. At this point, if whas not yet been visited, it will be one of the unvisited vertices on which DFS() is recursively called, so it will then be visited.

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v - Idea: Prove by induction on number of times DFS is called that DFS is only called on vertices w reachable from v

Claim: DFS counts correctly the number of vertices reachable from v

- Idea: Induction on number of unvisited vertices reachable from v
- DFS will never be called on same vertex twice

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited nodes reachable from v
Proof: Uses previous two observations

- DFS visits every node reachable from v
- DFS doesn't visit any node not reachable from v

