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Last Time

• Binary search trees (Ch 14)
• The locate method
• Further Implementation
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Today�s Outline

• Binary search trees (Ch 14)
• Implementation wrap-up

• Tree balancing to maintain small height
• AVL Trees

• Partial taxonomy of balanced tree species
• Red-Black Trees
• Splay Trees
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Add: Repeated Nodes
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Add Duplicate to Predecessor

• If insertLocation has a left child then
• Find insertLocation’s predecessor
• Add repeated node as right child of predecessor
• Predecessor will be in insertLocation’s left sub-tree

• Do you believe me?
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Corrected Version: add(E value)
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode);
else

if (insertLocation.left().isEmpty())
insertLocation.setLeft(newNode);

else 
// if value is in tree, we insert just before
predecessor(insertLocation).setRight(newNode);

}
count++;
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How to Find Predecessor
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Predecessor

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), ”Root has predecessor");
Assert.pre(!root.left().isEmpty(),"Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}
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Removal

• Removing the root is a (not so) special case
• Let’s figure that out first
• If we can remove the root, we can remove any 

element in a BST in the same way
• Do you believe me?

• We need to implement:
• public E remove(E item)
• protected BT removeTop(BT top)
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Case 1: No left binary tree

x

x.right x.right
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Case 2: No right binary tree
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Case 3: Left has no right subtree
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Case 4: General Case (HARD!)

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be > root

• Strategy: replace the root with the largest 
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s 
left subtree!
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Case 4: General Case (HARD!)
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Case 4: General Case (HARD!)

Replace root with predecessor(root),
then patch up the remaining tree
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RemoveTop(topNode) 

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other one
If left has no right child

make right the right child of left then return left
Otherwise find largest node C  in left

// C is the right child of its own parent P 
// C is the predecessor of right (ignoring topNode)

Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees
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But What About Height?

• Can we design a binary search tree that is 
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper 
about AVL trees in 1962 called "An algorithm for 
the organization of information"
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AVL Trees



19

• Balance Factor of a binary tree node:

• height of right subtree minus height of left subtree. 

• A node with balance factor 1, 0, or -1 is considered 
balanced. 

• A node with any other balance factor is considered 
unbalanced and requires rebalancing the tree. 

• Definition: An AVLTree is a binary tree in which every 
node is balanced.

AVL Trees
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AVL Trees have O(log n) Height
Theorem: An AVL tree on n nodes has height O(log n)

Proof idea
• Show that an AVL tree of height h has at least fib(h) 

nodes (easy induction proof---try it!)

• Recall (HW): !"# ℎ ≥ ( ⁄( ))+ if h ≥ 10
• So , ≥ ( ⁄( ))+ and thus log ⁄0 1 , ≥ ℎ

• Recall that for any 2, # > 0, log6 , = 89:; <
89:; 6

• So log6 , and log= , are Big-O of one another

• So h is O(log n)
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Unbalanced trees can be rotated to achieve balance.
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Single Right Rotation
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AVL Tree Facts
• A tree that is AVL except at root, where root 

balance factor equals �2 can be rebalanced 
with at most 2 rotations

• add(v) requires at most O(log n) balance 
factor changes and one (single or double) 
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance 
factor changes and (single or double) rotations 
to restore AVL structure

• An AVL tree on n nodes has height O(log n)
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AVL Trees: One of Many

There are many strategies for tree balancing to 
preserve O(log n) height, including
• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height

• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height
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A Red-Black Tree
(from Wikipedia.org)
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Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves 

have the same number of black nodes
• This is called the black height of the node
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A Red-Black Tree
(from Wikipedia.org)
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Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice 
that of any other leaf.
This in turn can be used to show

Theorem: A Red-Black tree with n internal nodes 
has height satisfying ℎ ≤ 2 log(/ + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children
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Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has 
height satisfying ℎ ≤ 2 log(/ + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2
• New tree has all children with degree 2, 3, or 4

• All leaves have depth exactly h’ and there are n+1 leaves

• So / + 1 ≥ 245, so log6 / + 1 ≥ ℎ7 ≥ 4
6

• Thus 2 log6 / + 1 ≥ ℎ
Corollary: R-B trees with n nodes have height O(log n)
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion


