CSCI I36

Data Structures \&
 Advanced Programming

Lecture 23
Fall 2018
Instructor: Bills

Administrative Details

- Lab 8: Simulations
- You will simulate two queuing strategies
- You can work with a partner
- Time spent on lab before Wed. is time well-spent!
- Problem Set 3 is online
- Due this Friday at beginning of class

Last Time

Improving Huffman's Algorithm

- Priority Queues \& Heaps
- A "somewhat-ordered" data structure
- Conceptual structure
- Efficient implementations

Today

- Finishing up with heaps
- HeapSort
- Alternative Heap Structures
- Binary Search Tree: A New Ordered Structure
- Definitions
- Implementation

Recap: Implementing Heaps

- Features
- Represent as a full binary tree stored in an array
- We always add in next available array slot (left-most available spot in binary tree (see percolate method)
- We always remove using "final" leaf (see pushDown method)
- Heap Invariant becomes
- data[i] <= data[2i+I]; data[i]<=data[2i+2] (or kids might be null)
- When elements are added and removed, do small amount of work to "re-heapify"
- Finding a node's child or parent takes constant time, as does finding "final" leaf or next slot for adding
- Since this heap corresponds to a full binary tree, the depth of the tree is $\mathrm{O}(\log \mathrm{n})$, so percolate/pushDown takes $\mathrm{O}(\log \mathrm{n})$ time!

Heapifying A Vector (or array)

- Method I: Top-Down
- Assume $\mathrm{V}[0 . . \mathrm{k}]$ satisfies the heap property
- Now call percolate on item in location $\mathrm{k}+\mathrm{I}$
- Then $\mathrm{V}[0 . . \mathrm{k}+\mathrm{I}]$ satisfies the heap property
- Method II: Bottom-up
- Assume V[k..n] satisfies the heap property
- Now call pushDown on item in location k-I
- Then V[k-I..n] satisfies heap property
- Check out the demos at visualgo.net

Top-Down vs Bottom-Up

- Top-down heapify: elements at depth d may be swapped d times:Total \# of swaps is at most
\sum^{h}

$$
d 2^{d}=(h-1) 2^{h+1}+2=(\log n-1) 2 n+2
$$

- This is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: $\mathrm{O}(\log n)$ swaps per element

Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth d may be swapped h-d times: Total \# of swaps is at most $\sum_{d=0}^{h}$

$$
(h-d) 2^{d}=2^{h+1}-h-2=2 n-\log n+2
$$

- This is $O(n)$--- beats top-down!
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times SO COOL!!!

Some Sums

$\sum_{d=0}^{d=k} 2^{d}=2^{k+1}-1$
$\sum_{d=0}^{d=k} r^{d}=\left(r^{k+1}-1\right) /(r-1)$
$\sum_{d=0}^{d=k} d * 2^{d}=(k-1) * 2^{k+1}+2$
$\sum_{d=0}^{d=k}(k-d) * 2^{d}=2^{k+1}-k-2$

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any $\mathrm{r}=1$

HeapSort

- Heaps yield another $O(n \log n)$ sort method
- To HeapSort a Vector "in place"
- Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
- Now repeatedly remove elements to fill in Vector from tail to head
- For(int i = v.size() - I; i>0; i--)
- RemoveMin from $v[0 . . i] / / v[i]$ is now not in heap
- Put removed value in location $v[i]$

Heap Sort vs QuickSort

Why Heapsort?

- Heapsort is slower than Quicksort in general
- Any benefits to heapsort?
- Guaranteed O(n log n) runtime
- Works well on mostly sorted data, unlike quicksort
- Good for incremental sorting

More on Heaps

- Set-up: We want to build a large heap. We have several processors available.
- We'd like to use them to build smaller heaps and then merge them together
- Suppose we can share the array holding the elements among the processors.
- How long to merge two heaps?
- How complicated is it?
- What if we use BinaryTrees for our heaps?

Mergeable Heaps

- We now want to support the additional destructive operation merge(heapl, heap2)
- Basic idea: heap with larger root somehow points into heap with smaller root
- Challenges
- Points how? Where?
- How much reheapifying is needed
- How deep do trees get after many merges?

Skew Heap

- Don't force heaps to be complete BTs?
- Develop recursive merge algorithm that keeps tree shallow over time
- Theorem: Any set of m SkewHeap operations can be performed in $O(m \log n)$ time, where n is the total number of items in the SkewHeaps
- Let's sketch out merge operation....

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T) if either S or T is empty, return the other if T.minValue < S.minValue
swap S and T (S now has minValue)
if S has no left subtree, T becomes its left subtree else
let temp point to right subtree of S left subtree of S becomes right subtree of S merge(temp, T) becomes left subtree of S return S

Tree Summary

- Trees
- Express hierarchical relationships
- Tree structure captures relationship
- i.e., ancestry, game boards, decisions, etc.
- Heap
- Partially ordered tree based on item priority
- Node invariants: parent has higher priority than each child
- Provides efficient PriorityQueue implementation

