CSCI 136 Data Structures & Advanced Programming

> Lecture 22 Fall 2018 Instructor: Bills

Last Time

- Lab 7: Two Towers
- Array Representations of (Binary) Trees
- Application: Huffman Encoding

Today

Improving Huffman's Algorithm

- Priority Queues & Heaps
 - A "somewhat-ordered" data structure
 - Conceptual structure
 - Efficient implementations

Huffman Codes

- Input: Text (a very long String!)
- Algorithm
 - Transform text into symbol frequency count
 - Build optimal encoding tree

Α	С	E	G	I	Ν	Ρ	R	т	U	_
3	2	I	Ι	2	4	I	I	2	I	2

An Encoding Tree

Left = 0; Right = 1

Huffman Encoding

- Input: symbols of alphabet with frequencies
- Huffman encode as follows
 - Create a single-node tree for each symbol: key is frequency; value is letter
 - while there is more than one tree
 - Find two trees TI and T2 with lowest keys
 - Merge them into new tree T with dummy value and key= T1.key+ T2.key
- Theorem: The tree computed by Huffman is an optimal encoding for given frequencies

Recall : Huffman Encoding Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
 - Removing two smallest frequency trees is fast
- Insert merged tree into correct (sorted) location in Vector
- Running Time:
 - O(n log n) for initial sorting
 - $O(n^2)$ for rest: O(n) for each re-insertion
- Can we do better...?

What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
 - add(E item); // add an item
 - E removeMin(); // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in O(log n) time, the Huffman while loop would take O(n log n) time instead of O(n²)!
- We've seen this situation before....

Priority Queues

Packet Sources May Be Ordered by Sender

sysnet.cs.williams.edu	priority = 1 (best)
bull.cs.williams.edu	2
yahoo.com	10
spammer.com	100 (worst)

Priority Queues

- Priority queues are also used for:
 - Scheduling processes in an operating system
 - Priority is function of time lost + process priority
 - Order services on server
 - Backup is low priority, so don't do when high priority tasks need to happen
 - Scheduling future events in a simulation
 - Medical waiting room
 - Huffman codes order by tree root "frequency"
 - A variety of graph/network algorithms
 - To roughly rank choices that are generated out of order

Priority Queues

- Name is misleading: They are **not FIFO**
- Always dequeue object with highest priority (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values

An Apology

 On behalf of computer scientists everywhere, I'd like to apologize for the confusion that inevitably results from the fact that

Higher Priority ↔ Lower Rank

The PQ removes the *lowest ranked* value in an ordering: that is, the *highest priority* value!

We're sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
 public E getFirst(); // peeks at minimum element
 public E remove(); // removes minimum element
 public void add(E value); // adds an element
 public boolean isEmpty();
 public int size();
 public void clear();
}

Notes on PQ Interface

- Unlike previous structures, we do not extend any other interfaces
 - Many reasons: For example, it's not clear that there's an obvious iteration order
- PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
 - Could be made to use Comparators instead...

Implementing PQs

- Queue?
 - Wouldn't work so well because we can't insert and remove in the "right" way (i.e., keeping things ordered)
- OrderedVector?
 - Keep ordered vector of objects
 - O(n) to add/remove from vector
 - Details in book...
 - Can we do better than O(n)?
- Heap!
 - Partially ordered binary tree

Heap

- A heap is a special type of tree
 - Root holds smallest (highest priority) value
 - Subtrees are also heaps (recursive definition!)
- So values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
- Invariant for nodes: For each child of each node
 - node.value() <= child.value() // if child exists
- Several valid heaps for same data set (no unique representation)

Inserting into a PQ

- Add new value as a leaf
- "Percolate" it up the tree
 - while (value < parent's value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
 - Finding a place to add new node
 - Finding parent
 - Depth of newly added node

Removing From a PQ

- Find a leaf, delete it, put its *data* in the root
- "Push" data down through the tree
 - while (*data.value* > value of (at least) one child)
 - Swap data with data of **smallest** child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Height of tree

Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
 - Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 - Parent of node i is in location (i-1)/2

Implementing Heaps

- Features
 - No gaps in array (array is complete)-- why?
 - We always add in next available array slot (left-most available spot in binary tree;
 - We always remove using "final" leaf
 - Heap Invariant becomes
 - data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)
 - When elements are added and removed, do small amount of work to "re-heapify"
 - How small? Note: finding a node's child or parent takes constant time, as does finding "final" leaf or next slot for adding
 - Since this heap corresponds to a full binary tree, the depth of the tree is O(log n), so percolate/pushDown takes O(log n) time!