CSCI 136
Data Structures &
Advanced Programming

Lecture 22
Fall 2018

Instructor: Bills

Last Time

 Lab 7: Two Towers
* Array Representations of (Binary) Trees
e Application: Huffman Encoding

Today

Improving Huffman’s Algorithm
* Priority Queues & Heaps

* A “somewhat-ordered” data structure
e Conceptual structure
e Efficient implementations

Huffman Codes

* Input: Text (a very long String!)

e Algorithm
* Transform text into symbol frequency count
* Build optimal encoding tree

An Encoding Tree

N:4

U:1

A:3

C:2

0 1
2 O O
1 0 1 0 1
T2 c1| |p1| |rR1| |E1

Left = 0; Right = 1

Huffman Encoding

* Input: symbols of alphabet with frequencies

e Huffman encode as follows

* Create a single-node tree for each symbol: key is
frequency; value is letter

* while there is more than one tree
* Find two trees T| and T2 with lowest keys

* Merge them into new tree T with dummy value and
key= T|.key+ T2.key

* Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

Recall : Huffman Encoding Algorithm

* Keep a Vector of Binary Trees

* Sort them by decreasing frequency

* Removing two smallest frequency trees is fast

* Insert merged tree into correct (sorted)
location in Vector

 Running Time:
* O(n log n) for initial sorting
* O(n?) for rest: O(n) for each re-insertion

e Can we do better...?

What Huffman Encoder Needs

A structure S to hold items with priorities

S should support operations
e add(E item); // add an item

* E removeMin(); // remove min priority item

S should be designed to make these two
operations fast

If, say, they both ran in O(log n) time, the
Huffman while loop would take O(n log n)
time instead of O(n?)!

We've seen this situation before....

Priority Queues

— — — N _
/

Packet Sources May Be Ordered by Sender

sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10

spammer .com 100 (worst)

Priority Queues

* Priority queues are also used for:

Scheduling processes in an operating system

* Priority is function of time lost + process priority

Order services on server

e Backup is low priority, so don’t do when high priority tasks need
to happen

Scheduling future events in a simulation

Medical waiting room

Huffman codes - order by tree root “frequency”

A variety of graph/network algorithms

To roughly rank choices that are generated out of order

Priority Queues

Name is misleading: They are not FIFO

Always dequeue object with highest
priority (smallest rank) regardless of when it
was enqueued

Data can be received/inserted in any order,
but it is always returned/removed according
to priority

Like ordered structures (i.e., OrderedVectors

and OrderedLists), PQs require comparisons
of values

An Apology

* On behalf of computer scientists everywhere, I'd
like to apologize for the confusion that inevitably
results from the fact that

Higher Priority < Lower Rank

e The PQ removes the lowest ranked value in an
ordering: that is, the highest priority value!

We're sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty/();
public int size();

public void clear();

Notes on PQ Interface

* Unlike previous structures, we do not extend
any other interfaces

* Many reasons: For example, it’s not clear that
there’s an obvious iteration order

* PriorityQueue uses Comparables: methods
consume Comparable parameters and return
Comparable values

* Could be made to use Comparators instead...

Implementing PQs

e Queue!

* Wouldn’t work so well because we can’t insert and
remove in the “right” way (i.e., keeping things ordered)

* OrderedVector!
e Keep ordered vector of objects
e O(n) to add/remove from vector
e Details in book...
e Can we do better than O(n)?

* Heap!

* Partially ordered binary tree

Heap

A heap is a special type of tree
* Root holds smallest (highest priority) value
e Subtrees are also heaps (recursive definition!)

So values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)

Invariant for nodes: For each child of each node
* node.value() <= child.value() // if child exists

Several valid heaps for same data set (no unique
representation)

Inserting into a PQ

Add new value as a leaf

“Percolate” it up the tree

* while (value < parent’s value) swap with parent
This operation preserves the heap property
since new value was the only one violating
heap property

Efficiency depends upon speed of

* Finding a place to add new node
* Finding parent
* Depth of newly added node

Removing From a PQ

Find a leaf, delete it, put its data in the root
“Push” data down through the tree

* while (data.value > value of (at least) one child)
e Swap data with data of smallest child

This operation preserves the heap property

Efficiency depends upon speed of
* Finding a leaf
* Finding locations of children

* Height of tree

Implementing Heaps

* VectorHeap

e Use conceptual array representation of BT
(ArrayTree)

* But use extensible Vector instead of array (makes
adding elements easier)
* Note:
* Root of tree is location 0 of Vector

e Children of node in location i are in locations 2i+|
(left) and 2i+2 (right)
* Parent of node i is in location (i-1)/2

Implementing Heaps

* Features
* No gaps in array (array is complete)-- why?
* We always add in next available array slot (left-most available spot
in binary tree;
* We always remove using “final” leaf

* Heap Invariant becomes
e datafi] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

* When elements are added and removed, do small amount

of work to “re-heapify”

* How small? Note: finding a node’s child or parent takes constant
time, as does finding “final” leaf or next slot for adding

 Since this heap corresponds to a full binary tree, the depth of the
tree is O(log n), so percolate/pushDown takes O(log n) time!

