
CSCI 136
Data Structures &

Advanced Programming

Fall 2018
Instructors

Bill Lenhart & Bill Jannen

2

Administrative Details

• Lab 1 handout is online
• Prelab (should be completed before lab):
• Lab 1 design doc

• Use Die Design Doc as model - no pseudo-code
needed this time!

• TA hours start tonight
• See TA hour schedule on course website

3

Last Time

Basic Java elements so far

• Primitive and array types
• Variable declaration and assignment

Some basic unix commands
• Compile (javac), run (java) cycle

4

Today
• Further examples

• Discussion: Lab 1
• Operators & operator precedence

• Expressions
• Control structures
• Branching: if – else, switch, break, continue
• Looping: while, do – while, for, for – each

• Object-Oriented Program (OOP) Design

• Basic concepts and Java-specific features

5

Sample Programs

• Sum0-5.java
• Programs that adds two integers

• Of Note:
• System.in is of type ReadStream
• Scanner class provides parsing of text streams (terminal

input, files, Strings, etc)
• args[] is passed to main from the OS environment

• args[] contains command-line arguments held as Strings

• Integer.valueOf(...) converts String to int
• Static values/methods: in, out, valueOf, main

Lab 1

• Purpose
• Coinstrip Game
• Demo of solution

• Die Design Doc

6

Operators

Java provides a number of built-in operators
including
• Arithmetic operators: +, -, *, /, %
• Relational operators: ==, !=, <, ≤, >, ≥
• Logical operators &&, || (don’t use &, |)
• Assignment operators =, +=, -=, *=, /=, ...

Common unary operators include
• Arithmetic: - (prefix); ++, -- (prefix and postfix)
• Logical: ! (not)

7

Operator Precedence in Java

8

Operator Gotchas!

• There is no exponentiation operator in Java.
• The symbol ^ is the bitwise or operator in Java.

• The remainder operator % is the same as the
mathematical 'mod' function for positive arguments,
• For negative arguments it is not: -8 % 3 = -2

• The logical operators && and || use short-circuit
evaluation:
• Once the value of the logical expression can be

determined, no further evaluation takes place.
• E.g.: If n = 0, then (n != 0) && (k/n > 3), will yield false

without evaluating k/n. Very useful!
9

Expressions

Expressions are either:
• literals, variables, invocations of non-void methods, or
• statements formed by applying operators to them
An expression returns a value

• 3+2*5 - 7/4 // returns 12
• x + y*z – q/w
• (- b + Math.sqrt(b*b – 4 * a * c))/(2*
a)

• (n > 0) && (k / n > 2) // computes a
boolean

10

Expressions

Assignment operator also forms an expression
• x = 3; // assigns x the value 3 and returns 3
• So y = 4 * (x = 3) sets x = 3 and y = 12 (and

returns 12)
Boolean expressions let us control program flow of
execution when combined with control structures

Example
– if ((x < 5) && (y !=0)) {...}
– while (! loggedIn) { ... }

11

Control Structures

Select next statement to execute based on value
of a boolean expression. Two flavors:
• Looping structures: while, do/while, for
• Repeatedly execute same statement (block)

• Branching structures: if, if/else, switch
• Select one of several possible statements (blocks)
• Special: break/continue: exit a looping structure

• break: exits loop completely
• continue: proceeds to next iteration of loop

12

while & do-while
Consider this code to flip coin until heads up...

Random rng = new Random();
int flip = rng.nextInt(2), count = 0;
while (flip == 0) { // count flips until “heads”

count++;
flip = rng.nextInt(2);

}

...and compare it to this
int flip, count = 0;
do { // count flips until “heads”

count++;
flip = rng.nextInt(2);

} while (flip == 0) ;
13

For & for-each
Here’s a typical for loop example

int[] grades = { 100, 78, 92, 87, 89, 90 };
int sum = 0;
for(int i = 0; i < grades.length; i++)

sum += grades[i];

This for construct is equivalent to
int i = 0;
while (i < grades.length) {

sum += grades[i];
i++;

}

Can also write
for (int g : grades) sum += g;
// called for-each construct

14

Loop Construct Notes
• The body of a while loop may not ever be executed
• The body of a do – while loop always executes at

least once
• For loops are typically used when number of

iterations desired is known in advance. E.g.
• Execute loop exactly 100 times
• Execute loop for each element of an array

• The for-each construct is often used to access
array (and other collection type) values when no
updating of the array is required
• We’ll explore this construct more later in the course

15

