CSCI 136
Data Structures &
Advanced Programming

Lecture |9
Fall 2018

Instructor: Bills

Last Time

e Trees

* Expression Trees
e Recursive evaluation

* Implementation

Today

Recursion/Induction on Trees
Applications: Decision Trees
Trees with more than 2 children
* Representations

Traversing Binary Trees
* As methods taking a BinaryTree parameter
* With Iterators

BT Questions/Proofs

* Prove

* The number of nodes at depth n is at most 2".

* The number of nodes in tree of height n is at
most 20*1)-].

* A tree with n nodes has exactly n-| edges

ne size() method works correctly

ne height() method works correctly

ne isFull() method works correctly

BT Questions/Proofs

Prove: Number of nodes at depth d2© IS at most
24,
|dea: Induction on depth d of nodes of tree

Base case: d=0: | node. | =2°/

Induction Hyp.: For some d 2 @, there are at
most 29 nodes at depth d.

Induction Step: Consider depth d+1. There are at most
2 nodes at depth d+1 for every node at depth d.

Therefore it has at most 2*29 = 29*! hodes v

BT Questions/Proofs

Prove that any tree on n2 1 nodes has n-1
edges

|dea: Induction on number of nodes
Base case: n = |. There are no edgesv

Induction Hyp: Assume that, for somen 2 1
every tree on n nodes has exactly n-| edges.

Induction Step: Let T have n+| nodes. Show it has
exactly n edges.

* Remove a leaf v (and its single edge) from T
* Now T has n nodes, so it has n-| edges

* Now add v (and its single edge) back, giving n+1
nodes and n edges.

BT Questions/Proofs

Prove that Binary Tree method size() is correct.
e Let n be the number of nodes in the tree T
e Alert: Strong Induction Ahead...

Base case: n = 0. T is empty---size() returns 0v/

Induction Hyp: Assume size() is correct for all trees
having at most n nodes.

Induction Step: Assume T has n+1| nodes
* Then left/right subtrees each have at most n nodes
* So size() returns correct value for each subtree

e And the size of T is | + size of left subtree + size of
right subtree v/

Representing Knowledge

Trees can be used to represent knowledge
e Example: InfiniteQuestions game
e Let’s play!
We often call these trees decision trees
* Leaf: object
* Internal node: question to distinguish objects

Two methods: play() and learn()

* Play: Move down decision tree until we reach a leaf

e Check to see if the leaf is correct

e Learn: If not correct, add question, make new and old
objects children

Let’s look at the code

Building Decision Trees

Gather/obtain data

Analyze data

* Make greedy choices: Find good questions that
divide data into halves (or as close as possible)

Construct tree with shortest height
In general this is a *hard™ problem!

Example P

DS OA

Representing Arbitrary Trees

What if nodes can have many children?

e Example: Game trees

Replace left/right node references with a list of
children (Vector, SLL, etc)

* Allows getting “i*"” child

Should provide method for getting degree of a
node

Degree 0 Empty list No children Leaf

Lab 9 Preview : Lexicon

e Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie

&
R

: eﬂe QG %

Lab 9 Preview : Tries

e A trie is a tree that stores words where

* Each node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

e All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

&
olOMO

SR

Now add “dot” and “news”

Now remove “not” and “zen”

Tries

Tree Traversals

* In linear structures, there are only a few basic
ways to traverse the data structure

e Start at one end and visit each element
o Start at the other end and visit each element
* How do we traverse binary trees!?

* (At least) four reasonable mechanisms

Tree Traversals

Lucas

/ N\

Jacob Nambi

/N N

Aria Kelsie Tongyu

In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

-+
Tree Traversals ./ \7
* Pre-order 2/ \3

* Each node is visited before any children. Visit
node, then each node in left subtree, then each
node in right subtree. (node, left, right)

o +¥237

* |n-order

* Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

o 2¥3+7

(“pseudocode™)

AN

x 7
/N
p) 3

Tree Traversals

e Post-order

e Each node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)

o 23%7+
* Level-order (not obviously recursive!)

* All nodes of level i are visited before nodes of
level i+1. (visit nodes left to right on each level)

o +%723

(“pseudocode™)

Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method

+
preOrder(t.left()); // \\
preOrder(t.right()); * 7

} / N\
23

For in-order and post-order: just move touch(t)!

But what about level-order???

