CSCI 136
Data Structures &
Advanced Programming

Lecture |7
Fall 2018

Instructor: Bills

Administrative Details

e Lab 7: PostScript
* No partners this week
* Review before lab; come to lab with design doc

e Check out the javadoc pages for the 3 provided
classes

e Token — A wrapper for semantic PS elements,

e Reader — An iterator to produce a stream of Tokens
from standard input or a List of Tokens,

e SymbolTable — A dictionary with String keys and Token
values: For user-defined names

http://cs.williams.edu/~cs136/labs/javadoc/Token.html
http://cs.williams.edu/~lenhart/cs136/javadoc/ps/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/SymbolTable.html

Last Time: lterators & Ordered
Structures

* |terators Continued
* |terating over lterators
e Ordered Structures: Preview

Today: Ordered Structures

e Lab 7 Discussion

e Ordered Structures:
e OrderedVector
e OrderedList

e Trees: Introduction

Lab 7: PostScript Interpreter

PostScript is a stack-based programming language

* designed for vector graphics & printing

Lab 7: Implement a small portion of a PS interpreter
e Read a stream of “tokens”
* Evaluate expressions using a stack

e Allow for creation of variables (and procedures!) using a
symbol table

Provided:

* Reader, Token, and SymbolTable class

* You write an interpreter class

Try out GhostScript: unix command: gs
e Type gs —-dNODISPLAY to suppress graphics window

Lab 7: Concept Overview

e Basic input unit: the token: There are multiple types
* Number, Boolean, Symbol, Procedure (sorry, no Strings for us)

* Implemented with class Token

e A PostScript program is a sequence of tokens

* Tokens are processed as received
* Numbers, booleans, procedures go on stack

* A symbol should

— Be put on stack (if preceded by /), or
— Cause an operation to be performed if it is a built-in symbol (add, pstack, ...), or
— Cause its value to be looked up in symbol table and appropriate action taken

* The SymbolTable class provides a symbol dictionry

e The Reader class provides an iterator for producing a stream of tokens

e Stream can come from standard input, a single Token, or a List of Tokens

* Your job: Write code to carry out the processing

e Driven by a method (you write) interpret(Reader r)

http://cs.williams.edu/~cs136/labs/javadoc/Token.html
http://cs.williams.edu/~cs136/labs/javadoc/SymbolTable.html
http://cs.williams.edu/~cs136/labs/javadoc/Reader.html

Lab 7: Suggested Approach

|. Read Lab handout and description in text carefully

2. Read the Javadoc pages for the 3 provided classes:
Using these classes well will help you a great deal!

3. Develop a plan. Here are some starting steps

|. Write your interpret method so that it just reads a token
stream from standard input and prints out each token.

2. Handle numbers, booleans, and pstack/pop operators

3. Follow the steps in the text in order

4. Debug as you go, use gs program to clarify expected
behavior

Ordered Structures

e Until now, we have not required a specific
ordering to the data stored in our structures

* |f we wanted the data ordered/sorted, we had to
do it ourselves

* We often want to keep data ordered
* Allows for faster searching

* Easier data mining - easy to find best, worst, and
median values, as well as rank (relative position)

Ordering Structures

The key to establishing order is being able to
compare objects

We already know how to compare two
objects...how!

Comparators and compare(T a, T b)
Comparable interface and compareTo(T that)

Two means to an end: which should we use?

BOTH!

Ordered Vectors

* We want to create a Vector that is always sorted

* When new elements are added, they are inserted into
correct position

* We still need the standard set of Vector methods
* add, remove, contains, size, iterator, ...

* Two choices
* Extend Vector (as we did in sorting lab)

e Create new class
e Allows for more focused interface
e Can have a Vector as an instance variable
* Avoid corrupting order by controlled access to Vector

* We will implement a new class (OrderedVector)
e Start with Comparables
* Generalize to use Comparators instead of Comparables

OrderedVector Methods

public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<iE> {
protected Vector<E> data;

public OrderedVector() {
data = new Vector<E>();

}

public void add(E value) {
int pos = locate(value);
data.add(pos, value);

}

protected int locate(E value) {

//use modified binary search to find position of wvalue
//if not found, returns position where add should occur
//uses iterative version of binary search (see text)

}

OrderedVector Methods

public boolean contains(E value) {
int pos = locate(value);
return pos < size() && data.get(pos).equals(value);

}
public Object remove (E value) {
if (contains(value)) {
int pos = locate(value);
return data.remove(pos);
}
else return null;
}
Performance:

add - O(n)
contains - O(log n)
remove - O(n)

Adding Flexibility with Comparators

* We would like to be able to allow ordered
structures to use different orders

* |dea: Add constructor that has a Comparator
parameter

e Q: How does structure know whether to use
the Comparator or the Comparable ordering!?

* A: The NaturalComparator class....

An Aside: Natural Comparators

* NaturalComparators bridge the gap between
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>>
implements Comparator<E> {

public int compare(E a, E b) {
return a.compareTo(b);

Generalizing OrderedVector

public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<E> {
protected Vector<E> data;

protected Comparator<E> comp;

public OrderedVector() {
data = new Vector<E>();
this.comp = new NaturalComparator<E>();

}

public OrderedVector (Comparator<E> comp) {
data = new Vector<E>();

this.comp = comp;

}

protected int locate(E value) {

//use modified binary search to find position of value
//return position

//use comp.compare instead of compareTo

}

//rest stays same..

Ordered Lists

Similar to OrderedVector

Can’t easily use SinglyLinkedList like
OrderedVector used Vector (Why?)

So, we just build a SinglyLinkedList-like
structure

add, contains, remove runtime?
o All O(n)...why?

OrderedList Methods

public class OrderedList<E extends Comparable<E>>

extends AbstractStructure<E> implements
OrderedStructure<iE> {

protected Node<E> data; // smallest value
protected int count; // size of list

protected Comparator<? super E> ordering;

public OrderedList() {
this(new NaturalComparator<E>());

}

public OrderedList (Comparator<? super E> ordering){
this.ordering = ordering;

clear();

OrderedList Methods

public void clear() {
data = null;
count = 0;

}

public boolean contains(E value) {
Node<E> finger = data; // target

while ((finger != null) &&

ordering.compare(finger.value(),value)<0)
finger = finger.next();

return finger!=null && value.equals(finger.value());

What Could Go Wrong!

OrderedVector Students
' — T Duane | * Students compared to
4.0 each other by GPA
| [Jeanmie | * Suppose next
— 3.5 semester | geta 3.7
T~ Bill and Jeannie gets a 3.3
3.3

What's the problem?

We have to recompute GPAs each semester
What happens if the values are allowed to change!?

We may need to resort vector

e But since this isn’t part of the interface, it may be forgotten
Options:

e Avoid changing values in OrderedStructures

* Incorporate an update method that repositions element

* Incorporate a resort method

e This invites adding a “setComparator” method....

e Always update a value by removing and re-adding

Type Safety & Generic Types

Question: Since String extends Object, does List<String> extend
List<Object>?
* le, can | say List<Object> = new List<String>()?
No. It would compromise the type system:
List<String> slist = new List<String>();

List<Object> olist = slist; // 1If this were possible
olist.add(new Object()); // This would be bad!

It generates a compiler error.
On the other hand...

String[] sa = {“I"”, *“love”, *“java”, “1"};
Object[] oa = sa;

oa[l] = new Object()); // This would be bad!
...actually compiles

e But causes a run-time error!

Introducing Trees

e Our structures have had a linear organization
* Stacks, queues

* Even ordered vectors, ordered lists, arrays,
vectors, lists are visualized linearly

* By linear we essentially mean that each
element has at most one successor and at
most one predecessor...

Branching Out: Trees

e A tree is a data structure where elements can
have multiple successors (called children)

* But still only one predecessor (called parent)

Root

L eaves

“Computer Tree”

ol UNIVAC
Ariio cechee / 7200
/ UNIVAC
cechen UNIVAC 9200

o’ R vic
- 1108
\Q“ —_— G P UNIVAC NCR CENTURY 200
Lz NCR CENTURY 100
1Gp € 141 o pos 7 o
LGP 901 s COMPRESSOR COLLINS eyt
on &0 Caioo

{24) DOP 324
e MiNUreman . HYDAC CORREL: HCM 201

ADVANCED

MIRUTEMAN

L »
4000 'OF 2083

‘\ ANTYG 2 VERDAN 0l
\ ANTYQ) D,
BUR 73 AN/MIQY AERls
T Y Y
R SG1

CCC DAYSTROM
DOP 224 136

ATETROM
ccc

oor 24 %%
e

AN/ASO 28V)

AN/TYK 6V
2 PEDSTONE
ey um\
[
W GUID FUNC DiG? MO |

come, Q6

Nt 440, PACKIUL ol TRICE

—250

™ X Loolncs
| magnerue o
T

MAGNEFUE B

FLAC

1
oxc ommeen MINIAC "
o

i UNIVAC U

BECOM TAC)
170 w100 ~

o A

c

WRITESAC 20 028 iy,
NATIONAL acw- oy Sy ™
" s:‘;mn un‘l;x’ HaTONAL NATIONAL o mamammen O Om— ags\-u,,
000 s 500750 " o7 . ~—

1970 1960 —=3iomm——" 1950 1955

House of Normandy, Battle of Hastings, 1066

William |
Robert William |l Adela Henry |
Stephen William Matilda

Henry I

HOUSE LANNISTER

I'n\\[\l R LANNISTER

IR EE

CERSEI JAIME TYRION LEM MARTYN
LANNISTER LANNISTER LANNISTER | ".\ NISTE] WNNISTER LANNISTER

Vo

HOUSE STARK

BENJEN
STARK

ROBB SANSA ARYA
STARK STARK STARK

Tree Features

* Hierarchical relationship
* Root at the top

e |eaf at the bottom

* |nterior nodes in middle

* Parents, children, ancestors, descendants, siblings

* Degree (of node): number of children of node

* Degree (of tree): maximum degree (across all nodes)

* Depth of node: number of edges from root to node

* Height of tree: maximum depth (across all nodes)

Other Trees

Phylogenetic tree
Directories of files

Game trees

e Build a tree

e Search it for moves with high likelihood of
winning

Expression trees

Plaghehnimhu Mollueca ¢ Arthropoda Chordata

j Precent Day
u Cridaria Nematoda
Peeullocoelor
No bdd
cady Segueefiation Seqfnentation
0DY0SOMES DEUIEROSTOMES
2o coelom from
cell madeg digestive tube
Coelom «
Radial symmetry \ Phyl,o g enetic
Bilateral eymra
. "y of the T’ee
Animal Kingdom
True Ticouee

Anceetral Proticte

Miocene

o 10 5

7 A

Pliocene Pleistocene

|
Black Bear

e DOmMestic Dog

Gray Wolf

Coyole

o —

Bush Dog
Maned Wolf

Hoary Fox

Gray Fox
Bat-Eared Fox

Raccoon Dog

Cape Fox
Hed Fox

Fennec Fox

Kit Fox

Arctic Fox

Cape Hunting Dog
Black-Backed Jackal |

Crab-Eating Fox

Millions of Years
0_~ Before Present

spilued
MN-JOM

spiued
ueduaWYy
yinos

spiued
N|-X04

~lenhart

el

research papers

index.html cs|36 cs356T

N

lectures.html handouts.html

Expression Trees

4%2+3 ;//\\\

+ /
(4%2+3)+ ((10=2)/ 4) SN SN
S -
3 4

N N
4 2 10 2

Introducing Binary Trees

Degree of all nodes <=2
Recursive nature of tree

* Empty

* Root with left and right subtrees

SLL: Recursive nature was captured by nodes
(Node<E>) on inside

Binary Tree: No “inner” node class; single
BinaryTree class does it all

