
CSCI 136
Data Structures &

Advanced Programming

Lecture 16
Fall 2018

Instructor: Bills

Last Time: Queues & Iterators

• Queues: Implementations Recap
• Queues: Applications
• Iterators : Preview

3

This Time: Iterators & Ordered
Structures

• Iterators Continued
• Iterating over Iterators
• Ordered Structures
• OrderedVector
• OrderedList

4

Iterators
• Iterators provide support for efficiently visiting all

elements of a data structure
• An Iterator:

• Provides generic methods to dispense values for
• Traversal of elements : Iteration
• Production of values : Generation

• Abstracts away details of how to access elements
• Uses different implementations for each structure

public interface Iterator<E> {
boolean hasNext() – are there more elements in iteration?
E next() – return next element
default void remove() – removes most recently returned value

• Default : Java provides an implementation for remove
• It throws an UnsupportedOperationException exception

A Simple Iterator
• Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;
int temp = current;
current = next;
next = temp + current;
return temp;

}

}

Why Is This Cool? (it is)

• We could calculate the ith Fibonacci number
each time, but that would be slow
• Observation: to find the nth Fib number, we

calculate the previous n-1 Fib numbers…
• But by storing some state, we can easily generate

the next Fib number in O(1) time

• Knowledge about the structure of the
problem helps us traverse the Fib space
efficiently one element at a time
• Let’s do the same for data structures

Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())

if(o.equals(iter.next())) count++;
return count;

}
// Or...

public int numOccurs (List<E> data, E o) {
int count = 0;
for(Iterator<E> i = data.iterator());
i.hasNext();)

if(o.equals(i.next())) count++;
return count;

}

Implementation Details

• We use both the Iterator interface and the
AbstractIterator class

• All concrete implementations in structure5 extend
AbstractIterator
• AbstractIterator partially implements Iterator

• Importantly, AbstractIterator adds two methods
• get() – peek at (but don’t take) next element, and
• reset() – reinitialize iterator for reuse

• Methods are specialized for specific data structures

Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
for(AbstractIterator<E> i =

(AbstractIterator<E>) data.iterator();
i.hasNext(); i.next())

if(o.equals(i.get())) count++;
return count;

}

Using an AbstractIterator allows more flexible coding
(but requiring a cast to AbstractIterator)

Note: Can now write a ‘standard’ 3-part for statement

More Iterator Examples

• How would we implement VectorIterator?
• How about StackArrayIterator?
• Do we go from bottom to top, or top to bottom?
• Doesn’t matter! We just have to be consistent…

• We can also make “specialized” iterators
• SkipIterator.java

• next() post-work: skip elts until new next found

• ReverseIterator.java
• A massive cheat!

• EvenFib.java

Iterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop

for(E elt : arr) {System.out.println(elt);}

Or, for example

// return number of times o appears in data
public int numOccurs (E[] data, E o) {

int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

Why did that work?!
List provides an iterator() method and…

The Iterable Interface

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

We can use the “for-each” construct…

for(E elt : boxOfStuff) { ... }

…as long as boxOfStuff implements the Iterable interface

public interface Iterable<T>
public Iterator<T> iterator();

Duane’s Structure interface extends Iterable, so we can use it:

General Rules for Iterators

1. Understand order of data structure
2. Always call hasNext() before calling next()!!!
3. Use remove with caution!
4. Don’t add to structure while iterating: TestIterator.java

• Take away messages:
• Iterator objects capture state of traversal

• They have access to internal data representations
• They should be fast and easy to use

Ordered Structures

• Until now, we have not required a specific
ordering to the data stored in our structures
• If we wanted the data ordered/sorted, we had to

do it ourselves

• We often want to keep data ordered
• Allows for faster searching
• Easier data mining - easy to find best, worst, and

median values, as well as rank (relative position)

Ordering Structures

• The key to establishing order is being able to
compare objects

• We already know how to compare two
objects…how?

• Comparators and compare(T a, T b)
• Comparable interface and compareTo(T that)
• Two means to an end: which should we use?

BOTH!

Ordered Vectors
• We want to create a Vector that is always sorted

• When new elements are added, they are inserted into
correct position

• We still need the standard set of Vector methods
• add, remove, contains, size, iterator, …

• Two choices
• Extend Vector (as we did in sorting lab)
• Create new class

• Allows for more focused interface
• Can have a Vector as an instance variable
• Avoid corrupting order by controlled access to Vector

• We will implement a new class (OrderedVector)
• Start with Comparables
• Generalize to use Comparators instead of Comparables

