CSCI 136
Data Structures &
Advanced Programming

Lecture |6
Fall 2018

Instructor: Bills

Last Time: Queues & Iterators

* Queues: Implementations Recap
* Queues: Applications
* |terators : Preview

This Time: lterators & Ordered
Structures

* |terators Continued
* |terating over lterators

e Ordered Structures

e OrderedVector
e OrderedList

lterators

* lIterators provide support for efficiently visiting all
elements of a data structure

e An lterator:

* Provides generic methods to dispense values for
* Traversal of elements : Iteration
* Production of values : Generation

e Abstracts away details of how to access elements
e Uses different implementations for each structure

public interface Iterator<E> {

boolean hasNext() — are there more elements in iteration?
E next() — return next element
default void remove() — removes most recently returned value

e Default : Java provides an implementation for remove
e It throws an UnsupportedOperationException exception

A Simple lterator

* Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;

int temp = current;

current = next;

next = temp + current;

return temp;

Why Is This Cool? (it is)

e We could calculate the ith Fibonacci number
each time, but that would be slow

* Observation: to find the n™ Fib number, we
calculate the previous n-| Fib numbers...

* But by storing some state, we can easily generate
the next Fib number in O(l) time

* Knowledge about the structure of the
problem helps us traverse the Fib space
efficiently one element at a time

e Let’s do the same for data structures

Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())
if(o.equals(iter.next())) count++;
return count;

}
// Or...

public int numOccurs (List<E> data, E o) {
int count = 0;
for(Iterator<E> 1 = data.iterator());
1.hasNext();)
if(o.equals(i.next())) count++;
return count;

Implementation Details

We use both the Iterator interface and the
Abstractlterator class

All concrete implementations in structure5 extend
Abstractlterator

* Abstractlterator partially implements Iterator

Importantly, Abstractlterator adds two methods
e get() — peek at (but don’t take) next element, and

* reset() — reinitialize iterator for reuse

Methods are specialized for specific data structures

Iterator Use : numOccurs

Using an Abstractlterator allows more flexible coding
(but requiring a cast to Abstractlterator)

Note: Can now write a ‘standard’ 3-part for statement

public int numOccurs (List<E> data, E o) {
int count = 0;
for (AbstractIterator<iE> i =
(AbstractIterator<kE>) data.iterator();
i.hasNext(); i.next())
if(o.equals(i.get())) count++;
return count;

More lterator Examples

* How would we implement Vectorlterator?

* How about StackArraylterator?
* Do we go from bottom to top, or top to bottom!?

* Doesn’t matter! We just have to be consistent...

* We can also make “specialized” iterators
 Skiplterator.java
* next() post-work: skip elts until new next found

* Reverselterator.java

* A massive cheat!

* EvenFib.java

lterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop
for(E elt : arr) {System.out.println(elt);}

Or, for example

// return number of times o appears in data
public int numOccurs (E[] data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

Why did that work?!
List provides an iterator() method and...

The Iterable Interface

We can use the “for-each” construct...
for(E elt : boxOfStuff) { ... }

...as long as boxOfStuf f implements the lterable interface

public interface Iterable<T>
public Iterator<T> iterator();

Duane’s Structure interface extends Iterable, so we can use it:

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

General Rules for lterators

Understand order of data structure

Always call hasNext() before calling next()!!!
Use remove with caution!

Don’t add to structure while iterating: Testlterator.java

Take away messages:
* lterator objects capture state of traversal

* They have access to internal data representations

* They should be fast and easy to use

Ordered Structures

e Until now, we have not required a specific
ordering to the data stored in our structures

* |f we wanted the data ordered/sorted, we had to
do it ourselves

* We often want to keep data ordered
* Allows for faster searching

* Easier data mining - easy to find best, worst, and
median values, as well as rank (relative position)

Ordering Structures

The key to establishing order is being able to
compare objects

We already know how to compare two
objects...how!

Comparators and compare(T a, T b)
Comparable interface and compareTo(T that)

Two means to an end: which should we use?

BOTH!

Ordered Vectors

* We want to create a Vector that is always sorted

* When new elements are added, they are inserted into
correct position

* We still need the standard set of Vector methods
* add, remove, contains, size, iterator, ...

* Two choices
* Extend Vector (as we did in sorting lab)

e Create new class
e Allows for more focused interface
e Can have a Vector as an instance variable
* Avoid corrupting order by controlled access to Vector

* We will implement a new class (OrderedVector)
e Start with Comparables
* Generalize to use Comparators instead of Comparables

