CSCI I36

Data Structures \&
 Advanced Programming

Lecture |4
Fall 2018
Instructor: Bills

Announcements

- Mid-Term Review Session
- Monday (I0/I5), 7:00-8:00 pm in TPL 203
- No prepared remarks, so bring questions!
- Mid-term exam is Wednesday, Octoberl7
- During your normal lab session
- You'll have I hour \& 45 minutes (if you come on time!)
- Closed-book
- Covers Chapters I-7 \& 9 and all topics up through Linked Lists
- A "sample" mid-term and study sheet are available online
- See Handouts \& Problem Sets

Last Time

- QuickSort and Sorting Wrap-Up
- Linear Structures
- The Linear Interface (LIFO \& FIFO)
- The AbstractLinear and AbstractStack classes
- Stack Implementations
- StackArray, StackVector, StackList,

Today: Linear Structures

- Stack applications
- Expression Evaluation
- PostScript: Page Description \& Programming
- Mazerunning (Depth-First-Search)

Evaluating Arithmetic Expressions

- Computer programs regularly use stacks to evaluate arithmetic expressions
- Example: $x^{*} y+z$
- First rewrite as $x y^{*} z^{+}$(we'll look at this rewriting process in more detail soon)
- Then:
- push x
- push y
- * (pop twice, multiply popped items, push result)
- push z
- + (pop twice, add popped items, push result)

Converting Expressions

- We (humans) primarily use "infix" notation to evaluate expressions
- $(x+y) * z$
- Computers traditionally used "postfix" (also called Reverse Polish) notation
- $x y+z^{*}$
- Operators appear after operands, parentheses not necessary
- How do we convert between the two?
- Compilers do this for us

Converting Expressions

- Example: $x^{*} y+z^{*} w$
- Conversion
I) Add full parentheses to preserve order of operations
$\left(\left(x^{*} y\right)+\left(z^{*} w\right)\right)$

2) Move all operators (+-*/) after operands $\left(\left(x y^{*}\right)\left(z w^{*}\right)+\right)$
3) Remove parentheses $x y^{*} \mathrm{zw}^{*}+$

Use Stack to Evaluate Postfix Exp

- While there are input "tokens" (i.e., symbols) left:
- Read the next token from input.
- If the token is a value, push it onto the stack.
- Else, the token is an operator that takes n arguments.
- (It is known a priori that the operator takes n arguments.)
- If there are fewer than n values on the stack \rightarrow error.
- Else, pop the top n values from the stack.
- Evaluate the operator, with the values as arguments.
- Push the returned result, if any, back onto the stack.
- The top value on the stack is the result of the calculation.
- Note that results can be left on stack to be used in future computations:
- Eg: $32 * 4+$ followed by 5 / yields 2 on top of stack

Example

- $\left(x^{*} y\right)+\left(z^{*} w\right) \rightarrow x y^{*} z^{*}+$
- Evaluate:
- Push x
- Push y
- Mult: Pop y, Pop x, Push $x^{*} y$
- Push z
- Push w
- Mult: Pop w, Pop z, Push z*w
- Add: Pop $x^{*} y$, Pop $z^{*} w, ~ P u s h\left(x^{*} y\right)+\left(z^{*} w\right)$
- Result is now on top of stack

Lab Preview: PostScript

- PostScript is a programming language used for generating vector graphics
- Best-known application: describing pages to printers
- It is a stack-based language
- Values are put on stack
- Operators pop values from stack, put result back on
- There are numeric, logic, string values
- Many operators
- Let's try it: The 'gs' command runs a PostScript interpreter....
- You'll be writing a (tiny part of gs in lab soon....

Lab Preview: PostScript

- Types: numeric, boolean, string, array, dictionary
- Operators: arithmetic, logical, graphic, ...
- Procedures
- Variables: for objects and procedures
- PostScript is just as powerful as Java, Python, ...
- Not as intuitive
- Easy to automatically generate
- Example: Recursive factorial procedure /fact \{ dup 1 gt \{ dup 1 sub fact mul \} if \} def
- Example: Drawing (see picture.ps)

Mazes

- How can we use a stack to solve a maze?
- http://www.primaryobjects.com/maze/
- Properties of mazes:
- We model a maze as a rectangular grid of cells
- There is a start cell and one or more finish cells
- Goal: Find path of adjacent free cells from start to finish
- Strategy: Consider unvisited cells as "potential tasks"
- Use linear structure (stack) to keep track of current path being explored

Solving Mazes

- We' Il use two objects to solve our maze:
- Position: Info about a single cell
- Maze: Grid of Positions
- General strategy:
- Use stack to keep track of path from start
- If we hit a dead end, backtrack by popping location off stack
- Mark discarded cells to make sure we don't visit the same paths twice

Backtracking Search

- Try one way (favor north and east)
- If we get stuck, go back and try a different way
- We will eventually either find a solution or exhaust all possibilities
- Also called a "depth first search"
- Lots of other algorithms that we will not explore: http://www.astrolog.org/labyrnth/algrithm.htm

A "Pseudo-Code" Sketch

// Initialization
Read cell data (free/blocked/start/finish) from file data Mark all free cells as unvisited
Create an empty stack S
Mark start cell as visited and push it onto stack S

While (S isn't empty \&\& top of S isn't finish cell) current \leftarrow S.peek () // current is top of stack If (current has an unvisited neighbor x) Mark x as visited; S.push(x) //x is explored next Else S.pop()
If finish is on top of S then success else no solution

Is Pseudo-Code Correct?

- Tools
- Concepts: adjacent cells; path; simple path; path length; shortest path; distance between cells; reachable from cell
- Solving a maze: is finish reachable from start?
- Theorem: The pseudo-code will either visit finish or visit every free cell reachable from start
- Proof: Prove that if algorithm does not visit finish then it does visit every free cell reachable from start
- Do this by induction on distance of free cell from start
- Base case: distance 0. Easy
- Induction: Assume every reachable free cell of distance at most $\mathrm{k} \geq$ - from start is visited. Prove for $\mathrm{k}+\mathrm{l}$

Is Pseudo-Code Correct?

- Induction Hyp: Assume every reachable free cell of distance at most $\mathrm{k} \geq$ - from start is visited.
- Induction Step: Prove that every reachable free cell of distance $\mathrm{k}+\mathrm{l}$ from start is visited.
- Let c be a free cell of distance $\mathrm{k}+\mathrm{I}$ reachable from start
- Then c has a free neighbor d that is distance k from start and reachable from start
- But then by induction, d is visited, so it was put on stack
- So each free neighbor of d is visited by algorithm
- Done!

Recursive "Pseudo-Code" Sketch

Boolean RecSolve(Maze m, Position current)
If (current eqauls finish) return true
Mark current as visited
next \leftarrow some unvisited neighbor of current (or null if none left) While (next does not equal null \&\& recSolve(m, next) is false) next \leftarrow some unvisited neighbor of current(or null if none left)
Return next \neq null

- To solve maze, call: Boolean recSolve(m, start)
- To prove correct: Induction on distance from current to finish
- How could we generate the actual solution?

Implementing A Maze Solver

- Iteratively: Maze.java
- Recursively: RecMaze.java
- Recursive method keeps an implicit stack
- The method call stack
- Each recursive call adds to the stack

Implementation: Position class

- Represent position in maze as (x, y) coordinate
- class Position has several relevant methods:
- Find a neighbor
- Position getNorth(), getSouth(), getEast(), getWest()
- boolean equals()
- Check states of position
- boolean isVisited(), isOpen()
- Set states of position
- void visit(), setOpen(boolean b)

Maze class

- Relevant Maze methods:
- Maze(String filename)
- Constructor; takes file describing maze as input
- void visit(Position
- Visit position p in maze
- boolean isVisited(Position p)
- Returns true iff p has been visited before
- Position start(), finish()
- Return start /finish positions
- Position nextAdjacent(Position p)
- Return next unvisited neighbor of p---or null if none
- boolean isClear (Position p)
- Returns true iff p is a valid move and is not a wall

Method Call Stacks

- In JVM, need to keep track of method calls
- JVM maintains stack of method invocations (called frames)
- Stack of frames
- Receiver object, parameters, local variables
- On method call
- Push new frame, fill in parameters, run code
- Exceptions print out stack
- Example: StackEx.java
- Recursive calls recurse too far: StackOverflowException
- Overflow.java

Recursive Call Stacks

```
public static long factorial(int n) {
    if (n <= 1) // base case
        return 1;
    else
        return n * factorial(n - 1);
}
public static void main(String args[]) {
    System.out.println(factorial(3)};
}
```

