
CSCI 136
Data Structures &

Advanced Programming

Lecture 13
Fall 2018

Instructors: Bill2

Announcements
• Lab today!

• After mid-term we’ll have some “non-partner” labs
• It’s Lab5 not Lab 4

• Mid-term exam is Wednesday, October 17
• During your normal lab session
• You’ll have approximately 1 hour & 45 minutes (if you

come on time!)
• Closed-book: Covers Chapters 1-7 & 9, handouts, and all

topics up through Linked Lists
• A “sample” mid-term and study sheet will be available

online
• Review session: Monday, Oct. 15, 7:00-8:00pm TCL 203

2

Last Time

• Class extension
• Abstract base classes
• Concrete extension classes

• List: A general-purpose structure
• Implementing Lists with linked structures
• Singly and Doubly Linked Lists

3

Today
• Linked List Wrap-Up
• The structure5 hierarchy so far
• Linear Structures

• The Linear Interface (LIFO & FIFO)
• The AbstractLinear and AbstractStack classes

• Stack Implementations
• StackArray, StackVector, StackList,

• Stack applications
• Expression Evaluation
• PostScript: Page Description & Programming
• Mazerunning (Depth-First-Search) 4

DoublyLinkedLists

• Keep reference/links in both directions
• previous and next

• DoublyLinkedListNode instance variables
• DLLN next, DLLN prev, E value

• Space overhead is proportional to number of elements
• ALL operations on tail (including removeLast) are fast!
• Additional work in each list operation

• Example: add(E d, int index)
• Four cases to consider now: empty list, add to front, add to

tail, add in middle

5

public class DoublyLinkedNode<E>
{

protected E data;
protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

{
data = v;
nextElement = next;
if (nextElement != null) // point next back to me

nextElement.previousElement = this;
previousElement = previous;
if (previousElement != null) // point previous to me

previousElement.nextElement = this;
}

public void add(int i, E o) {
Assert.pre((0 <= i) && (i <= size()),

"Index in range.");
if (i == 0) addFirst(o);
else if (i == size()) addLast(o);
else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {

before = after;
after = after.next();
i--;

}
// before, after refer to items in slots i-1 and i
// continued on next slide

DoublyLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters
// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size
}

}

DoublyLinkedList Add Method

public E remove(E value) {
DoublyLinkedNode<E> finger = head;
while (finger != null &&

!finger.value().equals(value))
finger = finger.next();

if (finger == null) return null;

// fix next field of previous element
if (finger.previous() != null)

finger.previous().setNext(finger.next());
else head = finger.next();

// fix previous field of next element
if (finger.next() != null)

finger.next().setPrevious(finger.previous());
else tail = finger.previous();
count--;
return finger.value();

}

CircularlyLinkedLists

• Use next reference of last element to reference head of
list

• Replace head reference with tail reference
• Access head of list via tail.next
• ALL operations on head are still fast : O(1) time
• addLast() is now fast – O(1) time
• Only modest additional complexity in implementation
• Can “cyclically reorder” list by changing tail node
• Question: What’s a circularly linked list of size 1?

10

Duane’s Structure Hierarchy

The structure5 package has a hierarchical structure

•A collection of interfaces that describe---but do not
implement---the functionality of one or more data
structures
•A collection of abstract classes provide partial
implementations of one or more data structures

• To factor out common code or instance variables

•A collection of concrete (fully implemented) classes to
provide full functionality of a data structure

11

AbstractList Superclass
abstract class AbstractList<E> implements List<E> {

public void addFirst(E element) { add(0, element); }
public E getLast() { return get(size()-1);}
public E removeLast() { return remove(size()-1); }

}

• AbstractList provides some of the list functionality
• Code is shared among all sub-classes (see Ch. 7 for more info)

public boolean isEmpty() { return size() == 0; }
• Concrete classes (SLL, DLL) can override the code implemented in AbstractList

• Abstract classes in general do not implement every method
• For example, size() is not defined although it is in the List interface

• Can�t create an �AbstractList� directly

• Concrete list classes extend AbstractList, implementing missing functionality
class Vector extends AbstractList {

public int size() { return elementCount; }
}

12

The Structure5 Universe (almost)

The Structure5 Universe (so far)

The Structure5 Universe (soon)

Linear Structures

• What if we want to impose access restrictions
on our lists?
• I.e., provide only one way to add and remove

elements from list
• No longer provide access to middle

• Key Examples: Order of removal depends on
order elements were added
• LIFO: Last In First Out
• FIFO: First In First Out

16

Examples

• FIFO: First In – First Out (Queue)
• Line at dining hall
• Data packets arriving at a router

• LIFO: Last In – First Out (Stack)
• Stack of trays at dining hall

• Java Virtual Machine stack

17

The Structure5 Universe (next)

Linear Interface

• How should it differ from List interface?
• Should have fewer methods than List interface since

we are limiting access …
• Methods:
• Inherits all of the Structure interface methods

• add(E value) – Add a value to the structure.
• E remove(E o) – Remove value o from the structure.

– But this is awkward---why?
• int size(), isEmpty(), clear(), contains(E value), …

• Adds
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()

19

Linear Structures

• Why no �random access�?
• I.e., no access to middle of list

• More restrictive than general List structures
• Less functionality can result in

• Simpler implementation
• Greater efficiency

• Approaches
• Use existing structures (Vector, LL), or
• Use underlying organization, but simplified

20

Stacks

• Examples: stack of trays or cups
• Can only take tray/cup from top of stack

• What methods do we need to define?
• Stack interface methods

• New terms: push, pop, peek
• Only use push, pop, peek when talking about stacks
• Push = add to top of stack
• Pop = remove from top of stack
• Peek = look at top of stack (do not remove)

21

Notes about Terminology
• When using stacks:

• pop = remove
• push = add
• peek = get

• In Stack interface, pop/push/peek methods call
add/remove/get methods that are defined in Linear
interface

• But �add� is not mentioned in Stack interface (it is
inherited from Linear)

• Stack interface extends Linear interface
• Interfaces extend other interfaces
• Classes implement interfaces 22

Stack Implementations

• Array-based stack
• int top, Object data[]
• Add/remove from index top

• Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no �wasted� space) 23

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no �wasted� space) 24

Summary Notes on The Hierarchy
• Linear interface extends Structure

• add(E val), empty(), get(), remove(), size()

• AbstractLinear (partially) implements Linear
• AbstractStack class (partially) extends AbstractLinear

• Essentially introduces “stack-ish” names for methods
• push(E val) is add(E val), pop() is remove(), peek() is get()

• Now we can extend AbstractStack to make
“concrete” Stack types
• StackArray<E>: holds an array of type E; add/remove at high end
• StackVector<E>: similar, but with a vector for dynamic growth
• StackList<E>: A singly-linked list with add/remove at head
• We implement add, empty, get, remove, size directly

• push, pop, peek are then indirectly implemented 25

The Structure5 Universe (so far)

