CSCI 136
Data Structures &
Advanced Programming

Lecture ||

Fall 2018
Instructors: Bill & Bill

Administrative Details

* Lab 4 Wednesday: Sorting!
* The lab has been posted on the Labs page

* You may again work with a partner
* Needn’t be same partner as Lab 3
* Fill out the Google Form!

* Produce a design before lab

e Both members of pair should produce their own

Last Time

e Strong Induction
 The Comparable Interface

* Basic Sorting

e Bubble, Insertion, Selection Sorts

* Including time and space analysis

This Time

* More Comparable Examples

e Better Sorting Methods
* MergeSort
e QuickSort

* More Flexible Comparing: Comparator Interface

Comparable Interface

e Java provides the Comparable interface, which specifies a
method compareTo()

* Any class that implements Comparable, provides compareTo()

public interface Comparable<T> {
//post: return < 0 if this smaller than other
return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);

compareTo in Card Example

We could have written

public class CardRankSuit implements
Comparable<CardRankSuit> {

public int compareTo(CardRankSuit other) {
if (this.getSuit() != other.getSuit())
return getSuit().compareTo(other.Suit());
else
return getRank().compareTo(other.getRank());

}

// rest of code for the class....

}

compareTo in Card Example

Notes

enum types automatically implement Comparable

The magnitude of the values returned by compareTo are not
important. We only care if value is positive, negative, or 0!

compareTo defines a “natural ordering” of Objects
e There’s nothing “natural” about it....

We use the BubbleSort algorithm to sort the cards in
CardDeck.java

Comparable & compareTo

The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

Other Java-provided structures can take advantage of objects
that implement Comparable

e See the Arrays class in java.util

e Example JavaArraysBinSearch

Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,
e x.compareTo(y) == 0 exactly when x.equals(y) == true

Note that Comparable limits user to a single ordering
The syntax can get kind of dense

e See BinSearchComparable.java : a generic binary search method
* And even more cumbersome....

ComparableAssociation

e Suppose we want an ordered Dictionary, so that we can use binary
search instead of linear

e Structure5 provides a ComparableAssociation class that
implements Comparable.

e The class declaration for ComparableAssociation is
...wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>
Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>
(Yikes!)

e Example: Since Integer implements Comparable, we can write
 ComparableAssociation<Integer, String> myAssoc =

new ComparableAssociation(new Integer(567), “Bob”);
* We could then use Arrays.sort on an array of these

Faster Sorting: Merge Sort

A divide and conquer algorithm
Typically used on arrays

Merge sort works as follows:
* If the array is of length O or |, then it is already sorted.

e Divide the unsorted array into two arrays of about half the

size of original.
e Sort smaller arrays recursively by re-applying merge sort.
* Merge the two smaller arrays back into one sorted array.
Time Complexity?
e Spoiler Alert! Weé'll see that it’s O(n log n)
Space Complexity?
* O(n)

8 14
8 14
8 4]
8] [14]
8 14]
1 8

[l 8

Merge Sort

29
29 1]
29]
291 [1]
1 29]
14 29]
9 14

17
17
7]
17
9

17

|6

39
39
39]
[39]
39]
16
17

16
16
16
16]
9
17
29

[]

16
39°
39°

merge
merge

merge

Merge Sort

* How would we implement it?
* First pass...
// recurstvely mergesorts Affrom .. 1o/ “in place”

void recMergeSorttlelper(A//, intfrom, int to)
if (from=to)
mid = (from +t0)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, t0)
merge(A, from, to)

But merge hides a number of important details....

Merge Sort = O(n log n)

8 14 29 17 39 16 9]
8 14 29] 17 39 16 9] split 7
8 14] [29] 17 39] [l6 9] split logn
8] [14] [221 [11 [17] [3%9] [I6] [9] split
8 14] || 291 [I7 39] [9 6] merge "
| 8 14 29] [9 16 17 39] merge logn
[| 8 9 14 16 |17 29 39] merge._

‘ J
Y

merge takes at most n comparisons per line

Time Complexity Proof

Prove for n = 2% (true for other n but harder)

That 1s, MergeSort for performs at most
e n * log (n) = 2k * k comparisions of elements

Base cases k £ 1: 0 comparisons: 0 < 1 % 21 ¢/

Induction Step: Suppose true for all integers
smaller than k. Let T(k) be # of comparisons
for 2k elements. Then

T(k) £ 2k+2:T(k—1) < 2k+ 2(k—1)2Kk 1< k2K

16

Problems with Merge Sort

* Need extra temporary array

* |f data set is large, this could be a problem

* Waste time copying values back and forth
between original array and temporary array

e Can we avoid this?

Quick Sort

* Quick sort is desighed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort
Divide list in half Partition™ list into 2 parts
Sort halves Sort parts

Merge halves Join* sorted parts

Quick Sort

public void quickSortRecursive(Comparable datal],
int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order
int pivot;
if (low >= high) return;

/* 1 - place pivot */

pivot = partition(data, low, high);

/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+l, high);

20

Partition

|. Put first element (pivot) into sorted position

2. All to the left of “pivot” are smaller and all
to the right are larger

3. Return index of “pivot”

21

Partition

int partition(int data[], int left,

int right) {
while (true) {

while (left < right && data[left] < data[right])
right--;

if (left < right) {

swap(data,left++,right);
} else {

return left;

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);
} else {

return right;

22

Complexity

* Time:
 Partition is O(n)

* |f partition breaks list exactly in half, same as
merge sort, so O(n log n)

* |f data is already sorted, partition splits list into
groups of | and n-1, so O(n?)
* Space:
e O(n) (so is MergSort)

* In fact, it’'s n + c compared to 2n + c for MergeSort

23

Merge vs. Quick (Average Time

3500
3000
2500
2000
1500
1000

500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Food for Thought...

* How to avoid picking a bad pivot value!?

* Pick median of 3 elements for pivot (heuristic!)

* Combine selection sort with quick sort
* For small n, selection sort is faster
e Switch to selection sort when elements is <=7

* Switch to selection/insertion sort when the list is
almost sorted (partitions are very unbalanced)

e Heuristic!

25

Sorting Wrapup

Time Space
Bubble Worst: O(n?) O(n):n+c
Best: O(n) - if “optimiazed”
Insertion Worst: O(n?) O(n):n+c
Best: O(n)
Selection Worst = Best: O(n?) O(n) :n+c
Merge Worst = Best:: O(n log n) O(n) :2n + ¢
Quick Average = Best: O(n log n) O(n) :n+c

Worst: O(n?)

More Skill-Testing
(Try these at home)

Given the following list of integers:
9561101524
|) Sort the list using Bubble sort. Show your work!

2) Sort the list using Insertion sort. . Show your work!

3) Sort the list using Merge sort. . Show your work!

4) Verify the best and worst case time and space
complexity for each of these sorting algorithms as
well as for selection sort.

27

Comparators

e Limitations with Comparable interface
* Only permits one order between objects
* What if it isn’t the desired ordering?
* What if it isn’t implemented!?

* Solution: Comparators

28

Comparators (Ch 6.8)

e A comparator is an object that contains a method that
is capable of comparing two objects

e Sorting methods can be written to apply a comparator
to two objects when a comparison is to be performed

e Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by

// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

29

Example

Note that Patient does

class Patient { ¢ not implement
protected int age; Comparable or
protected String name; Comparator!

public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {
return a.getName().compareTo(b.getName());

}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {

if (c.compare(a[i], a[max]) > 0) {..}

sort (patients, new NameComparator());

30

Comparable vs Comparator

e Comparable Interface for class X
* Permits just one order between objects of class X
e Class X must implement a compareTo method
e Changing order requires rewriting compareTo

* And recompiling class X

e Comparator Interface

* Allows creation of “Compator classes” for class X
e Class X isn’t changed or recompiled

* Multiple Comparators for X can be developed
e Sort Strings by length (alphabetically for equal-length)

31

Selection Sort with Comparator

public static <E> int findPosOfMax(E[] a, int last,
Comparator<iE> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)
if (c.compare(a[maxPos], a[i]) < 0) maxPos = 1i;

return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<iE> c) {
for(int i1 = a.length - 1; 1i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);
}
}

e The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;
32

