
CSCI 136
Data Structures &

Advanced Programming

Lecture 11
Fall 2018

Instructors: Bill & Bill

Administrative Details

• Lab 4 Wednesday: Sorting!
• The lab has been posted on the Labs page
• You may again work with a partner

• Needn’t be same partner as Lab 3
• Fill out the Google Form!

• Produce a design before lab
• Both members of pair should produce their own

2

Last Time

• Strong Induction
• The Comparable Interface
• Basic Sorting
• Bubble, Insertion, Selection Sorts
• Including time and space analysis

3

This Time

• More Comparable Examples
• Better Sorting Methods
• MergeSort
• QuickSort

• More Flexible Comparing: Comparator Interface

4

Comparable Interface

• Java provides the Comparable interface, which specifies a
method compareTo()
• Any class that implements Comparable, provides compareTo()

public interface Comparable<T> {
//post: return < 0 if this smaller than other

return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);
}

compareTo in Card Example

We could have written

public class CardRankSuit implements
Comparable<CardRankSuit> {

public int compareTo(CardRankSuit other) {
if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());
}

// rest of code for the class....
}

compareTo in Card Example

Notes
• enum types automatically implement Comparable
• The magnitude of the values returned by compareTo are not

important. We only care if value is positive, negative, or 0!
• compareTo defines a “natural ordering” of Objects

• There’s nothing “natural” about it….

• We use the BubbleSort algorithm to sort the cards in
CardDeck.java

Comparable & compareTo

• The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

• Other Java-provided structures can take advantage of objects
that implement Comparable
• See the Arrays class in java.util
• Example JavaArraysBinSearch

• Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,
• x.compareTo(y) == 0 exactly when x.equals(y) == true

• Note that Comparable limits user to a single ordering
• The syntax can get kind of dense

• See BinSearchComparable.java : a generic binary search method
• And even more cumbersome….

ComparableAssociation
• Suppose we want an ordered Dictionary, so that we can use binary

search instead of linear
• Structure5 provides a ComparableAssociation class that

implements Comparable.
• The class declaration for ComparableAssociation is

…wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>

Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>

(Yikes!)
• Example: Since Integer implements Comparable, we can write

• ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(new Integer(567), “Bob”);

• We could then use Arrays.sort on an array of these

Faster Sorting: Merge Sort

• A divide and conquer algorithm
• Typically used on arrays
• Merge sort works as follows:

• If the array is of length 0 or 1, then it is already sorted.
• Divide the unsorted array into two arrays of about half the

size of original.
• Sort smaller arrays recursively by re-applying merge sort.
• Merge the two smaller arrays back into one sorted array.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n) 12

Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge

13

Merge Sort
• How would we implement it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from ≤ to)
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
14

Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge

log n

log n

merge takes at most n comparisons per line

15

� #���%#&"�,)-��'%%�

• �'%+���%'�$����! �)'*���%'�%)��'�$��*)���'��'�

• ���)� (����'���%') �%'��&�'�%'#(��)�#%()

• $�.�"%���$�����! .�!��%#&�' (%$(%���"�#�$)(

• ��(����(�(�!�/�

�	��%#&�' (%$(
�	���
�.��
 0

• �$�*�) %$��)�&
��*&&%(��)'*���%'��""� $)���'(�
(#�""�'�)��$�!����)���!�������%���%#&�' (%$(�
�%'��! �"�#�$)(�����$

• ��!��/��!��.��!�
��/��!�����!�
��!�
�/�!.�!0

�

Problems with Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

18

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

19

Quick Sort

public void quickSortRecursive(Comparable data[],
int low, int high) {

// pre: low <= high
// post: data[low..high] in ascending order

int pivot;
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

20

Partition

1. Put first element (pivot) into sorted position

2. All to the left of �pivot� are smaller and all
to the right are larger

3. Return index of �pivot�

21

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;
if (left < right) {

swap(data,left++,right);
} else {

return left;
}

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);

} else {
return right;

}
}

} 22

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

23

Merge vs. Quick (Average Time)

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

24

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <= 7

• Switch to selection/insertion sort when the list is
almost sorted (partitions are very unbalanced)
• Heuristic!

25

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if “optimiazed”

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

26

More Skill-Testing
(Try these at home)

Given the following list of integers:
9 5 6 1 10 15 2 4

1) Sort the list using Bubble sort. Show your work!
2) Sort the list using Insertion sort. . Show your work!
3) Sort the list using Merge sort. . Show your work!
4) Verify the best and worst case time and space

complexity for each of these sorting algorithms as
well as for selection sort.

27

Comparators

• Limitations with Comparable interface
• Only permits one order between objects
• What if it isn’t the desired ordering?
• What if it isn’t implemented?

• Solution: Comparators

28

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

29

Example
class Patient {

protected int age;
protected String name;
public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does
not implement
Comparable or
Comparator!

30

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And recompiling class X

• Comparator Interface
• Allows creation of “Compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Sort Strings by length (alphabetically for equal-length)
31

Selection Sort with Comparator

32

public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)

if (c.compare(a[maxPos], a[i]) < 0) maxPos = i;
return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;

