
Java Class Types
CSCI 136: Fall 2018

Handout 3
12 September

Class Types

We noted earlier that the String type in Java was not a primitive (or array) type. It is what Java calls a class-
based (or class) type—this is the third category of types in Java. Class types, are based on class declarations. Class
declarations allow us to create objects that can hold more complex collections of data, along with operations for
accessing/modifying that data. For example

public class Student {
private int age;
private String name;
private char grade;

public Student(int theAge, String theName, char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

}

public int getAge() { return age;}

public String getName() { return name;}

public char getGrade() { return grade;}

public void setAge(int newAge) { age = newAge;}

public void setGrade(char grade) { this.grade = grade;}
}

The above, grotesquely oversimplified, class declaration specifies the data components (instance variables) of a Stu-
dent object, along with a method (called a constructor∗) describing how to create such objects, and several short
methods for accessing/modifying the data components (fields/instance variables) of a Student object. Given such a
class declaration, one can write programs that declare (and create) variables of type Student:

Student a;
Student b;
a = new Student(18, "Patti Smith", ’A’);
b = new Student(20, "Joan Jett", ’B’);

Or, combining the declaration of the variables and creation (instantiation) of the corresponding values (objects):

Student a = new Student(18, "Patti Smith", ’A’);
Student b = new Student(20, "Joan Jett", ’B’);

The words public and private are called access level modifiers; they control the extent to which other classes can
create, access, or modify objects, their fields, and their methods. Declaring the class Student to be public allows
other classes to create objects of type Student. Likewise, declaring the methods getName, setGrade, etc., to
∗ Note: The constructor uses the same name as the class

1

be public allows other classes to invoke these methods on any Student objects they have created. Declaring the
instance variables (name, age, grade) to be private blocks other classes from directly accessing or modifying
those variables. An almost universal rule of thumb in object-oriented design is to allow instance variables to be
accessed/modified only through the use of class methods. This helps guarantee that the underlying state of an object
can’t be compromised by users and that the underlying implementation of a class can be changed if needed without
compromising the functionality of programs that use the class.

The ability to create new data types through class declarations allows for the construction of robust and reusable code
modules and supports the development of larger bodies of code. Class types can be used very much like primitive
types: Variables of any class type can be created, passed to (and returned from) methods, used as types of instance
variables for even more complex classes, and so on. One can create arrays of variables of any class type:

// Create an array to store 3 objects of type Student
Student[] class = new Student[3];

// Create the three Student objects and store them in the array
class[0] = new Student(18, "Patti Smith", ’A’);
class[1] = new Student(20, "Joan Jett", ’B’);
class[2] = new Student(20, "David Bowie", ’A’);

Note the use of new here, both for the creation of the individual student objects and for the creation of the array. Array
and class-based types have more complex storage requirements for their values than do primitive types; in Java, that
storage is allocated by using the keyword new followed by an invocation of the array or class constructor. The two
exceptions to this norm are

• The allocation of an array by explicitly listing its values: int[] scores = {97, 85, 100};,

• The creation of a String using a String literal †: String name = "Zeta";.

Strings are unique in Java among class-based types in that String values can be specified by String literals; the only
other types whose values can be specified by literals are the primitive types.
Strings and arrays in Java have a very similar flavor, but there are some key differences; among them are:

• The ith element of an array x is referenced with syntax x[i]; the ith character in a String x is referenced with
syntax x.substring(i, i+ 1).

• Strings are immutable: one cannot assign a value to an individual position in a String variable; rather a new
String can be constructed by piecing together (concatenating) other Strings.

• To get the size (length) of a String x, use x.length() (i.e., invoke the length method of the String class);
to get the size of an array x, use x.length (i.e., access the length instance variable of the array x).

The Structure of a Java Program
A Java program consists of a set of class declarations; each class declaration typically describes a type of object that
can be created and includes any object data (instance variables) and functionality (class methods). An executing
program consists of a sequence of statements that declare and construct objects and then invoke the methods of the
objects in order to access or modify them in some way. These statements are woven together with other statements
that control the flow of program execution (”if” statements, looping constructs, and so on). Java itself is not a large
language; the set of keywords and symbols in the language is modest. What makes the language powerful and flexible
is the ability to add functionality by designing new class types.
Java is designed to be run in many different environments, from stand-alone code on a computer to embedded systems
on a wide range of devices. The method for executing Java code that we will focus on is the use of a special method,
(always) named main that we can include in a Java class declaration. Here’s a simple Java program:

†A literal is an explicit representation of a value in Java source code, such as 21, 3.14159, ’C’, true, "Hi there!". The only
other literal for class types is null, which can be assigned to any variable of non-primitive type.

2

import Student;

public class StudentDemo {

pubic static void main(String[] args) {
Student a = new Student(18, "Patti Smith", ’A’);
Student b = new Student(20, "Joan Jett", ’B’);

if(a.grade() == b.grade())
System.out.println("Grades match");

else
System.out.println("Grades don’t match");

}
}

The program above consists entirely of a main method. The method itself is pretty dull, it merely compares the grades
of the two student objects and prints an appropriate message. The first line of the main method, called the method
signature, always has the form public static void main(String [] args)‡. We’ll talk more about the
meanings of the keywords public, static, void, but, essentially, they indicate that

public the method can be invoked by users of the Student class

static the method can be invoked (called) without reference to a particular object of type Student; that is, the method
can be called with the syntax: Student.main(x), where x is an array of Strings

void the method does not return a value

Using any text editor, we can create a file that contains the class declaration above, giving the file the name
StudentDemo.java (always use the name of the class as the name of the file). We compile the program (convert
it into Java bytecode) by typing javac StudentDemo.java in a terminal window. We can then execute the
bytecode of the main method of the program by typing java StudentDemo.
The StudentDemo class also includes an import statement. This statement ensures that the Student class is
available for use in the StudentDemo class. Here’s another example of a class that It’s worth noting that we can
define a class that consists only of a main method. For example,

public class MathCalcs {

import java.lang.Math;

pubic static void main(String[] args) {
double x = Math.pow(E,PI); // eˆpi
double y = Math.pow(PI,E)/ // piˆe
if (x > y) System.out.println("eˆpi is greater than piˆe");
else if (y > x) System.out.println("piˆe is greater than eˆpi");
else System.out.println("eˆpi equals piˆe");

}
}

Note that we import the Math class from the java.lang package. A package is a collection of classes that have been
bundled together to provide a family of services. The java.lang package is part of the standard Java distribution.

Enumeration Types
Before exploring the properties and uses of class types, let’s briefly look at a fourth category of types provided by
Java: enumeration types. Enumeration types are used to provide families of named constants. For example, we could
create named constants for the four suits and 13 ranks of a deck of playing cards as follows;

‡Well, the name args can be replaced by any other legal variable name....

3

public enum Suits { CLUBS, DIAMONDS, HEARTS, SPADES }

public enum Ranks {TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
JACK, QUEEN, KING, ACE }

We could then use these names to create a Card class:

public class Card {

private Suit s;
private Rank r;

public Card(Suit s, Rank r) {
this.s = s;
this.r = r;

}

public Suit getSuit() { return s; }
public Rank getRank() { return r; }
public void setSuit(Suit s) { this.s = s; }
public void setRank(Rank r) { this.r = r; }

}

This code could then be used to create a deck of cards:

Card[] deck = new Card[52];

int i = 0;
for (Suit s : Suit.values())

for (Rank r : Rank.values()) {
Card[i] = new Card(s, r);
i++;

The file BasicCard.java contains an implementation of a simple card class like the one above. Note that the keyword
public is missing from the two enum declarations. This is because a single file can only contain one public class
declaration. Which leads us to note that calling enumeration types a ”fourth category” is somewhat misleading. An
enumeration type is just a special kind of class type that allows us to define classes having fixed numbers of possible
values and that can be iterated over using the for-each loop construct in Java. In the following more thorough
versions of our playing card example, we put each enum declaration in its own file, where we can declare them
public. More on this later.

Classes: Interfaces, Implementation, and Abstraction
Let’s use our Card class example to explore more of the features supported by the Java class construct.

We chose to represent a card with two enum values, one each for the rank and the suit. We could have decided to
represent a card using two integers instead: a rank in the range {0, . . . , 12} (or {1, . . . , 13}, or {w, . . . , 14}, etc) and
a suit in the range {0, . . . , 3} (or {1, . . . , 4}, ...). Or we could have chosen to represent each card by a number in the
range {0, . . . , 51}. Each of these representations has advantages and disadvantages; in different situations we might
choose one over another§.
§Although, admittedly, in an example this simple, the stakes are pretty low; in the coming weeks we’ll see that data structure selection often has

dramatic performance implications.

4

How can we design our card code so that we could support multiple implementations—and do so with a minimal
amount of code duplication? The first step is to make a distinction between what functionality cards provide and how
they provide it; that is, to separate the interface of the card class from its implementation(s). Before doing this, we’ll
make a small, but useful, digression.

We said earlier¶ that Java provides four categories of types: primitive, class, array, and enum types (and later admitted
that enum wasn’t really a separate category, just a special kind of class type). Class, array, and enum types are referred
to as reference types: a variable of one of these types, does not hold an actual object (or entire array) but rather holds a
reference to (information about the location in memory of) the object or array. When you assign a value to a variable
of some primitive type, the variable stores that value; when you assign a value to a class (or array) type variable, the
variable stores a reference to to the actual object (or array).

This difference has several important implications. Suppose I execute the following lines of Java code:

int x = 3, y=0;
y = x;
x++;

Now x has the value 4, but y still has the value 3: the statement y = x copied the value of x to y. Subsequent
changes to x do not affect y. Now consider the following code fragment:

Student a = new Student(18, "Patti Smith", ’A’);
Student b = new Student(20, "Joan Jett", ’B’);
b = a;
a.setAge(19);

What is the age associated with student b? It is 19 because the statement b = a copied the reference to the student
named Patti Smith from variable a to variable b. Thus a and b now reference the exact same Student object, not
separate copies of it (and poor Joan Jett has been lost forever). Thus any change to the object referenced by a is also a
change to the (same) object referenced by b‖.

So, all of the types described so far are types that let us create actual values, of either primitive or reference type. But
there is another variety of type that does not let us create actual values. It is called an interface type. An interface lets
us specify functionality without providing an implementation. It can include the declaration of constants and method
signatures (but not method implementations). Once an interface has been written, other classes can implement that
interface: that is, they can provide implementations of the method the interface describes. Let’s consider our card
example.

We replace the Card class with an interface:

public interface Card {

// Methods - must be public
public Suit getSuit();
public Rank getRank();

}

¶Java Essentials handout
‖This same reasoning applies to values passed as parameters to, and returned from, methods.

5

The declarations of the Rank and Suit enums have been moved to their own files; the Suit enum looks like:

public enum Suit {
CLUBS, DIAMONDS, HEARTS, SPADES; // the values

public String toString() {
switch (this) {

case CLUBS : return "clubs";
case DIAMONDS : return "diamonds";
case HEARTS : return "hearts";
case SPADES : return "spades";

}
return "Bad suit!";

}

public static void main(String[] args) {
for(Suit s : Suit.values()) System.out.println(s);
}

}

The Suit (and Rank) enums provide a toString method to provide a nice ”no caps” representation of their values.
Note that the Card interface has no instance variables or executable code, just a description of the methods that any
class claiming to implement the interface should provide. Also note that there are no constructors—unlike a class, an
interface cannot create (instantiate) objects itself and there are no values to initialize.

Here’s a class, CardRankSuit that implements the Card interface.

public class CardRankSuit implements Card
{

// "protected" means other classes can’t access them
// (data hiding)

// instance variables
protected Suit suit; // The suit of card: CLUBS..SPADES
protected Rank rank; // The rank of the card: TWO..ACE

// Constructors

// Constructs a card of the given type
public CardRankSuit(Rank theRank, Suit theSuit) {

suit = theSuit;
rank = theRank;

}

// returns suit of card
public Suit getSuit() {

return suit;
}

// returns rank of card
public Rank getRank() {

return rank;
}

public String toString() {

6

return getRank() + " of " + getSuit();
}

public static void main(String s[]) {
Card ace = new CardRankSuit(Rank.ACE, Suit.SPADES);
Card three = new CardRankSuit(Rank.THREE, Suit.DIAMONDS);

System.out.println(ace);
System.out.println(three);

}

}

Note that the first line of the class declaration above explicit states that CardRankSuit implements Card. This imposes
the requirement that each method in the Card interface be implemented by CardRankSuit. The methods that are
declared in Card must have exactly the same signature in CardRankSuit as they do in Card. Also note that in
the method main—a modest test of the class CardRankSuit— two variables are declared to be of type Card
but are instantiated (created) as type CardRankSuit. Any class that implements Card can be used instead of
CardRankSuit. One very useful consequence of this is that one can write methods with parameters of type Card
and invoke them with any values from classes that implement Card.

This allows us to write code that manipulates objects but that is independent of the actual implementation of those
objects! For example, we could just as easily have developed a much different implementation∗∗ of the Card type:

public class Card52v2 implements Card
{

// "protected" means other classes can’t access them
// (data hiding)

// instance variables
protected int code; // 0 <= code < 52; suit = code / 13; rank = code % 13

// Constructors

// Constructs a card of the given type
public Card52v2(Rank theRank, Suit theSuit) {

code = theSuit.ordinal() * 13 + theRank.ordinal();
}

public Card52v2(int index) {
code = index;

}

// returns suit of card
public Suit getSuit() {

return Suit.value(code / 13);
}

// returns rank of card
public Rank getRank() {

return Rank.value(code % 13);
}

∗∗Yet another implementation is provided on the course web site.

7

public String toString() {
return getRank() + " of " + getSuit();

}

public static void main(String s[]) {
Card ace = new Card52v2(Rank.ACE, Suit.SPADES);
Card three = new Card52v2(14);

System.out.println(ace);
System.out.println(three);

}
}

Here each card is encoded by a single integer and the class internally computes the appropriate rank and suit values
as needed. In particular, note that getRank and getSuit are quite different from their counterparts in the class
CardRankSuit—all that is necessary is that they produce the correct value. Also note that two constructors were
provided since it seems reasonable that to provide a Rank/Suit version as well as an index version—only one of
the two is needed, and the Rank/Suit version is arguably preferable.

While the getRank and getSuit methods are different for each class that implements Card notice that the
toString method is identical; in this case, because it only uses methods defined in the interface. A good cod-
ing practice is to always attempt to factor out common code and put it in one place; this avoids having to maintain the
same code in multiple places. Java provides a way to do this: abstract classes.

An abstract class is merely one which is declared with the Java keyword abstract. Like an interface, an abstract
class cannot instantiate objects, but unlike an interface, an abstract class can have its own instance variables, and
implement methods. These features make abstract classes good intermediates between interfaces and complete (non-
abstract) class declarations: Any method that has the same implementation across all classes that implement the
interface can be put in the abstract class††.

Below we show an abstract base class for our card example, and describe how its presence changes the classes that
fully implement Card.

public abstract class CardAbstract implements Card
{

public String toString() {
return getRank() + " of " + getSuit();

}
}

We want to position this class ”between” the Card interface and the full implementations: CardRankSuit,
Card52, etc.. We do this by indicating that CardAbstract implements Card‡‡. The only method that can be
factored out in this example is the toString method, so we include it here and remove it from the individual im-
plementing classes. We also need to indicate that the implementing classes CardRankSuit, Card52, etc. know
about and can use the code in CardAbstract. We do this by saying that these classes extend CardAbstract.
We no longer have to state that CardRankSuit, Card52, etc. implement Card; because they are extending
a class that implements Card, they themselves automatically are classes that implement Card. Other than removing
the toString method and altering the ”class” statement in each of CardRankSuit, Card52, etc., no further
modifications are needed; the code for these classes is available on the course web site.

This decomposition of our code into an interface, one (or more) abstract classes, and one or more fully implemented
classes will appear repeatedly throughout the semester as we design our data structures.

††A class playing this role is sometimes called an abstract base class.
‡‡Clearly it only partially implements Card.

8

Extending Non-Abstract Classes
Continuing our playing card example, supposed we decided that for some applications we wanted each of our cards
to be able to store a point value. How might we take advantage of our previous coding work? Java allow us to extend
classes, adding new instance variables and methods. Here is an implementation of a class CardRankSuitPoints
that extends CardRankSuit so that each card now has a point value.

public class CardRankSuitPoints extends CardRankSuit
{

// "protected" means other classes can’t access them
// (data hiding)

// instance variables
protected int points;

// Constructors

// Constructs a card of the given type
public CardRankSuitPoints(Rank theRank, Suit theSuit,

int pointVal) {
super(theRank, theSuit);
points = pointVal;

}

// Constructs a card of the given type
public CardRankSuitPoints(Rank theRank, Suit theSuit) {

super(theRank, theSuit);
// Default point value is "face" value
points = 2 + theRank.ordinal();

}

// returns point value of card
public int getPoints() {

return points;
}

// Note: Probably don’t want to add point value
// to String representation of card, but it’s done
// to illustrate the overriding of a method
public String toString() {

return super.toString() + " (" + points + " points)";
}

public static void main(String s[]) {
Card ace = new CardRankSuitPoints(Rank.ACE, Suit.SPADES, 20);
Card three = new CardRankSuitPoints(Rank.THREE, Suit.DIAMONDS);

System.out.println(ace);
System.out.println(three);

}
}

Here are the salient features of this code:

• The phrase extends CardRankSuit is included in the class statement,

• A new protected instance variable points is added,

9

• The features of CardRankSuit—instance variables, methods—are inherited from CardRankSuit and so
do not need to be rewritten here (unless it is desired to change their behavior),

• The constructor is modified to allow a parameter to pass in a point value for a card; that constructor, through the
keyword super begins by calling the constructor for CardRankSuit,

• A second constructor allows for a default point setting, so no point value parameter needed,

• A new method getPoints is added, and the method toString is overridden so that when an object of type
CardRankSuitPoints is converted to a String, the point value is included.

Hopefully this extended example has given you a sense of how combining interfaces, inheritance, and abstract classes
provides support for flexible and efficient development of modular and reusable code. Before we end, let’s put the
code to use by creating a rudimentary deck of cards class. An object created by the CardDeck class provides a deck
of 52 standard playing cards. When created, the deck is sorted from the 2 of clubs to the ace of spades. There is
also a method, shuffle that randomly permutes the order of the cards in the deck, as well as a toString method.
Finally, the method main creates a deck of cards, prints it out, then repeatedly shuffles it until an ace appears as the
”top” card on the deck, reporting how many shuffles were needed and printing the deck in order.

public class CardDeck {

static protected final int NUM_CARDS = 52;

protected Card[] cards;
protected Random gen;
/*
* Create a new random deck

*/
public CardDeck() {

// allocate array and create random number generator
cards = new Card[NUM_CARDS];
gen = new Random();

int count = 0;
for(Suit s : Suit.values())

for(Rank r : Rank.values()) {
cards[count] = new Card413(r, s);
count++;

}
shuffle();

}

public void shuffle() {

for (int remaining = cards.length; remaining > 1; remaining--) {
int i = gen.nextInt(remaining);
Card toMove = cards[i];
cards[i] = cards[remaining-1];
cards[remaining-1] = toMove;

}
}

/*
* Returns a string representation of the deck

*/
public String toString() {

10

String result = "";
for (int i = 0; i < cards.length; i++) {

result = result + cards[i] + "\n";
}
return result;

}

/*
* Return true when top card is an ace

*/
protected boolean isAceOnTop() {

return Rank.ACE == cards[0].getRank();
}

public static void main(String s[]) {
CardDeck deck = new CardDeck();
System.out.println();
System.out.println(deck);

int count = 0;
while(!deck.isAceOnTop()) {

System.out.println("Not yet...");
count++;
deck.shuffle();

}
System.out.println("Deck #:" + count + " has an ace on top!");
System.out.println(deck);

}
}

Aspects of CardDeck worth noting

• The deck is held as an array of Cards; only when each card is created do we need to commit to a particular
implementation,

• The shuffle method is cute: It picks a random position from 0 to 51 and swaps the card in that position with the
card in position 51, then it picks a random position from 0 to 50 and swaps the card in that position with the
card in position 50, and so forth. This is much more efficient than, say, generating new cards at random, while
making sure that the same card is not generated more than once!

Some Final Notes: Testing Object Equality and the Object Class
Consider the following code fragment:

Card a = new Card(Rank.KING, Suit.DIAMONDS);
Card b = new Card(Rank.KING, Suit.DIAMONDS);
Card c = a;
System.out.println(a == c);
System.out.println(a == b);

What does this code print? Not surprisingly, the first println will produce true; the second, however, will produce
false. Why? While cards a and b both represent the king of diamonds, they are two different objects and the equality
operator, when applied to class types, is checking equality of the references, not the actual contents of the objects. But
we would often like to be able to determine whether two different objects of the same type have the same value (e.g.,
whether two different card objects both represent the king of diamonds). Java provides a method for this: the equals
method. Adding the equals method to, say, CardRankSuit as illustrated below, allows us to test for the kind of
equality (equivalent values in different cards) that we desire

11

public boolean equals(Object other) {
Card c = (Card) other;
return c.getRank() == this.rank && c.getSuit() == this.suit;

}

Now we can check equality of our cards by writing, say,

if (myCard.equals(yourCard)) \{ ... \}

In fact, if we rewrote the code as follows

public boolean equals(Object other) {
Card c = (Card) other;
return c.getRank() == this.getRank() && c.getSuit() == this.getSuit();

}

we could then move the code into the abstract base class CardAbstract and wouldn’t need to include it in all of
the separate classes that implement the Card interface.

There are a number of situations in which some Java library class, for example the Java Collections classes, will use
the equals method when comparing objects, so it is a good idea to add this method to any classes you write for
which reference equality is not the appropriate version of equality for your class.

You might wonder why we made the type of the parameter other be Object rather than Card. The reason is the
following. All class types in Java extend by default the class Object; it is the simplest reference type. The class
Object includes a handful of methods, among them toString and equals that are therefore inherited by all class
types. Because these methods have to work for every class-based type and yet still have the same method signature,
the parameter to equals must be of type Object. In order to use the Card methods getRank and getSuit on
the parameter, it must be cast from type Object to type Card.

What would happen if someone passed some object that was not of type Card to the equals method, say
myCard.equals(someStudent)? The attempt to cast other of type Student to type Card would produce
a run-time error. Java is a type-safe language and will only permit the casting of a value to its actual type or of a type
that it extends. To avoid the run-time error, we could modify equals as follows:

public boolean equals(Object other) {
if(other instanceof Card) {

Card c = (Card) other;
return c.getRank() == this.getRank() &&

c.getSuit() == this.getSuit();
}
else return false;

}

Clearly if other is not even a Card, it can’t be equal to a value that is a Card!

12

