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More on Induction
In a prior handout, Induction Essentials, several versions of the First Principle of Mathematical Induction (sometimes
called weak induction) were introduced. In the weak form, however, often this principle cannot be directly applied. To
see this, consider the following problem.

Example Prove that every integer n > 1 has a prime factor p; that is, p is a prime∗ number and n = p ∗ q for some
integer q.

Note: If n = p ∗ q for integers p and q, we say that p divides n. [Clearly q then also divides n.]

Let’s check some cases: 2 and 3 are themselves prime; 4 = 2 · 2, 5 is prime, 6 = 2 · 3. So far, so good. Let’s try a
proof by induction.

Base Cases: We’ve done several above.
Induction Hypothesis: For some n ≥ 2, n has a prime factor.
Induction Step: Show, using the Induction Hypothesis, that n+ 1 has a prime factor.
What do we do now? There’s no helpful relationship between numbers that divide n and those that divide n+ 1. The
only thing we can say is that either n+1 itself is prime (Yay! We’d be done!) or that n+1 has a factor k, 1 < k < n+1;
that is, k divides n. However, we don’t know that k is prime. It would be great if we could say that ”by induction” k
has a prime factor p, since then p would also be a factor of n. But we can’t use our First Principle of Induction on p,
since p may be much less than n.
The Second Principle of Mathematical Induction, described in class, comes to our rescue.

Theorem 1 (The Second Principle of Mathematical Induction (Strong Induction)). Let P0, P1, . . . , Pn, . . . be a se-
quence of propositions, one for each integer n ≥ 0. Suppose that, for some b ≥ 0

• P0, P1, . . . , Pb are true, and that

• For every n ≥ b, if P0, P1, . . . , Pn are all true, then Pn+1 is true.

Note: This condition is often written as: For every n ≥ b, if Pk is true for all k : 0 ≤ k ≤ n, then Pn+1 is true.

Then all of the propositions P0, P1, . . . , Pn, . . . are true.

Note: Starting with P0 is a convention, but it may be that the first proposition is P1, P17, or some other value. The
theorem is still valid in these situations.

Let’s apply this to our problem. Since 1 < k < n+ 1, then k has a prime factor p. But if p divides k, and k divides n,
then p divides n † Done!

Let’s try another example.

Example

You might remember from high school that the sum of the interior angles of a triangle equals 180◦. Let’s prove that
the sum of the interior angles of any n-sided polygon is (n− 2)180◦.

Base Case: n = 3. Proved by your high school geometry teacher.
∗A positive integer p > 1 is prime if the only positive integers that evenly divide it are itself and 1.
†Hopefully this is clear. But just in case: if p divides k than k = pa for some integer a, and if k divides n then n = kq for some integer q. But

then n = (pa)q = p(aq) and aq is an integer, so p divides n.
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Induction Hypothesis: For some n ≥ 3, for all k : 3 ≤ k ≤ n, any k-sided polygon has the sum of its interior angles
equal to (k − 2)180◦.

Induction Step: Show now that any n+ 1-sided polygon hasthe sum of its interior angles equal to (n+ 1− 2)180◦ =
(n− 1)180◦.
This is actually pretty easy. Every polygon has at least one internal diagonal, that is, a line segment connecting two
of the vertices of the polygon that lies completely inside the polygon. Cutting the polygon in two along this segment
gives two new polygons, each of which have fewer than n + 1 sides. In fact, one of them will have k sides and one
will have m sides, where m+ k = n+ 3 (the diagonal becomes a side of each new polygon, adding two new sides).

But since k and m are each at least 3 and m + k = n + 3, it must be that each of k and m is less than n + 1, so,
by (strong) induction, the k-sided polygon has its interior angles add to (k − 2)180◦ and the m-sided polygon has its
interior angles add to (m − 2)180◦. Gluing them back together shows that the original n + 1-sided polygon has its
interior angles add to (k − 2)180◦ + (m− 2)180◦ = (k +m− 4)180◦ = (n+ 1− 2)180◦.

The second principle of induction is so useful that often folks use it even when the first principle suffices and that’s
fine. Although it might not be obvious, the two are, in fact, equivalent. Let’s see an example of this.

Example

Let’s show that every integer n ≥ 12 can be written as the sum of 4s and 5s.

Base Case(s): 12 = 4 + 4 + 4, 13 = 4 + 4 + 5, 14 = 4 + 5 + 5, 15 = 5 + 5 + 5.
Induction Hypothesis: For some n ≥ 12, k can be written as the sum of 4s and 5s, for all 12 ≤ k ≤ n.

Induction Step: show that n+ 1 can be written as the sum of 4s and 5s.

Because we have verified the property for 12, 13, 14, 15, we can assume that n + 1 ≥ 16. Now consider the number
n+ 1− 4 = n− 3. Since n+ 1 ≥ 16, we have n− 3 ≥ 12. Thus n− 3 can be written as the sum of 4s and 5s. But
then clearly so can (n− 3) + 4—which is just n+ 1.
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