
CSCI 136
Data Structures &

Advanced Programming

Lecture 7
Fall 2017

Instructors: Bill & Bill

Last Time

• Associations
• Code Samples
• WordFreq, Dictionary (Associations, Vectors)

• Generic Data Types
• Lab 2 Design and Strategies
• Vector Implementation

Today: Linked Lists

• Vector Implementation continued
• Condition Checking
• Pre- and post-conditions, Assertions

• List: A general-purpose structure
• Implementing Lists with linked structures
• Singly and Doubly Linked Lists

3

Basic Vector<E> Methods

public class Vector<E> {
public Vector() // Make a small Vector
public Vector(int initCap) // Make Vector of given capacity
public void add(E elt) // Add elt to (high) end of Vector
public void add(int i, E elt) // Add elt at position i
public E remove(E elt) // Remove (and return) elt
public E remove(int i) // Remove (and return) elt at pos i
public int capacity() // Return capacity
public int size() // Return current size
public boolean isEmpty() // Is size == 0?
public boolean contains(E elt) // Is elt in Vector?
public E get(int i) // Return elt at position i
public E set(int i, E elt) // Change value at position i
public int indexOf(E elt) // Return earliest position of elt
}

Class Vector : Basic Methods

• Much work done by few methods:
• indexOf(E elt, int i) // find first occurrance of elt at/after pos. I

• Used by indexOf(E elt)
• remove methods use indexOf(E elt)

• firstElement(), lastElement() use get(int i)

• Method names/functions in spirit of Java classes
• indexOf has same behavior as for Strings

• Methods are straightforward except when array is full
• How do we add to a full Vector?

• We make a new, larger array and copy values to it

Extending the Array

• How should we extend the array?
• Possible extension methods:
• Grow by fixed amount when capacity is reached

• Double array when capacity is reached

• How could we compare the two techniques?
• Run speed tests?

• Hardware/system dependent

• Count operations!
• We’ll do this soon

ensureCapacity
• How to implement ensureCapacity(int minCapacity)?

// post: the capacity of this vector is at least minCapacity
public void ensureCapacity(int minCapacity) {

if (elementData.length < minCapacity) {
int newLength = elementData.length; // initial guess
if (capacityIncrement == 0) {
// increment of 0 suggests doubling (default)

if (newLength == 0) newLength = 1;
while (newLength < minCapacity) {

newLength *= 2;
}

} else {
// increment != 0 suggests incremental increase

while (newLength < minCapacity) {
newLength += capacityIncrement;

}
}

// assertion: newLength > elementData.length.
Object newElementData[] = new Object[newLength];
int i;

// copy old data to array
for (i = 0; i < elementCount; i++) {

newElementData[i] = elementData[i];
}

elementData = newElementData;
// garbage collector will pick up old elementData

}
// assertion: capacity is at least minCapacity

}

ensureCapacity

Pre and Post Conditions

• Recall charAt(int index) in Java String class
• What are the pre-conditions for charAt?

• 0 <= index < length()

• What are the post-conditions?
• Method returns char at position index in string

• We put pre and post conditions in comments above
most methods

/* pre: 0 ≤ index < length
* post: returns char at position index
*/
public char charAt(int index) { … }

Pre and Post Conditions

• Pre and post conditions “form a contract”
• Post-condition is guaranteed if method is

called when pre-condition is true
• Examples:

• s.charAt(s.length() - 1): index < length, so valid
• s.charAt(s.length() + 1): index > length, not valid

• These conditions document requirements that
user of method should satisfy

• But, as comments, they are not enforced

Other Examples

• Other places pre and post conditions are useful

// Pre: other is of type Card
// Post: Returns true if suits and ranks match

public boolean equals(Object other) {
if (other instanceof Card) {

Card oc = (Card) other;
return this.getRank() == oc.getRank() &&

this.getSuit() == oc.getSuit();

}
else return false;

}

Assert Class

• Pre- and post-condition comments are useful
as a programmer, but it would be really helpful
to know as soon as a pre-condition is violated
(and return an error)

• The Assert class (in structure5 package)
allows us to programmatically check for pre-
and post-conditions

Assert Class

The Assert class contains the methods:

public static void pre(boolean test, String message);

public static void post(boolean test, String message);

public static void condition(boolean test, String message);

public static void fail(String message);

If the boolean test is NOT satisfied, an exception is raised,
the message is printed and the program halts

Assert Example

• Let’s look in CardsWithBaileyAssert
• This time, we’ll use assertions to check for

pre-conditions
• Have to import structure5.Assert (in bailey.jar)

• Use instanceof to check Object other in
equals() method
• This allows Java to print useful error messages

when something is wrong

General Rules about Assert

1. State pre/post conditions in comments
2. Check conditions in code using “Assert”
3. Use Fail in unexpected cases (such as the

default block of a switch statement)

• Any questions?
• From this point on:

• You should use pre- and post-conditions
• You are (strongly) encouraged to use assertions

The Java assert keyword

• An alternative to Duane’s Assert class
• Added in Java 1.4
• Two variants

• assert boolean_expression
• Throws an AssertionError if the expression is false

• assert boolean_expression : other_expression
• In addition, prints value of other_expression

• See CardsWithJavaAssert.java

Assertions Help Debug

• No need to slow down “production” code
• Assertions are disabled at runtime by default
• Use –enableassertions or –ea to turn on

assertions

javac –ea AbstractCard.java

Pros and Cons of Vectors

Pros
• Good general purpose list
• Dynamically Resizeable

• Fast access to elements
• vec.get(387425) finds item

387425 in the same
number of operations
regardless of vec’s size

Cons
• Slow updates to front

of list (why?)
• Hard to predict time

for add (depends on
internal array size)

• Potentially wasted space

Today we look at another way to store data: Linked Lists
18

But First : List Interface
interface List {

size()
isEmpty()
contains(e)
get(i)
set(i, e)
add(i, e)
remove(i)
addFirst(e)
getLast()
.
.
.

}

• Flexible interface

• Can be used to describe many
different types of lists

• It’s an interface…therefore it
provides no implementation

• Vector implements List

• Other implementations are
possible

19

List Implementations

• General concept for storing/organizing data
• Vectors implement the List interface
• We now explore other List implementations

• SinglyLinkedList
• CircularlyLinkedList
• DoublyLinkedList

20

Linked List Basics

• There are two key aspects of Lists
• Elements of the list
• The list itself

• Visualizing lists

head tail

List element List
21

Linked List Basics

• List nodes are recursive data structures

• Each “node” has:
• A data value

• A “next” value that identifies the next element in
the list

• Can also have “previous” that identifies the
previous element (“doubly-linked” lists)

• What methods does Node class need?

22

• How would we implement SinglyLinkedListNode?
• SinglyLinkedListNode = SLLN in my notes
• SLLN = Node in the book (in Ch 9)

• How about SinglyLinkedList?
• SinglyLinkedList = SLL in my notes

• What would addFirst(E d) look like?
• getFirst()?
• addLast(E d)? (more interesting)
• getLast()?

SinglyLinkedLists

head

value next

23

