
CSCI 136
Data Structures &

Advanced Programming

Lecture 35
Fall 2017

Bill J

Bill L

CS 102T

CS 136

2

CS Holiday Party
Today at 2:30 in

3rd Floor Common
Room

Announcements
• Final Class 😭
• Help Opportunities😀
• TAs available this weekend

• Sat. 3-5pm; Sun. 1-5pm

• Review Session
• Tuesday, Dec. 12, 1:30-2:30 pm in Physics 205

• Office Hours

• Final Exam is Thursday, Dec. 14😬
• 9:30-noon in Biology 112

• Cumulative, but focused on second half of course
• Sample exam and 2-page study sheet are on-line

3

Last Time

• Maps & Hashing Applications
• “Advanced” data structures

• Cuckoo hashing
• Bloom Filters

4

Today

• Deduplication (one last hashing application)

• Course Wrap-up
• Recap and answer any outstanding questions

• SCS Forms

5

Deduplication

• Imagine you are a cloud storage provider, and someone
uploads the hit song Shoot_pass_slam.mp3
• Millions of others will as well (Shaq Diesel went platinum…)

• Do you really want to store millions of copies of
an identical file?
• NO!* You would rather deduplicate extra copies

• Map every song called Shoot_pass_slam.mp3 to
the same value?
• Shoot_pass_slam.mp3 Shoot_pass_slam.mp3

• The key shouldn’t be the file name, but the file data

6

Data De-duplication Strategy

• Instead of mapping:

file_name➞ file_data
• We map:

file_name➞ hash_of_contents

• Then we have a separate Map that contains:
hash_of_contents➞ file_data

• Insight: Many problems in computer science
are solved by a layer of indirection!

7

Deduplication
• What if we aren’t storing music, but a file that is

frequently modified?
• We may not want to detect duplicates at the granularity of

entire files – if even one byte changes, we store both copies

• Instead, break file into chunks and deduplicate chunks
• Now we map:

file_name➞ file_recipe
• We only store one copy of each chunk!
• Use cases?

• Labs where we give you starter files as a template
• Keeping versions of your files as they evolve over time

• Git version control system does this

RECIPE
C0: 1a9xe0
C1: 7f1e42
C2: 48a261
…

8

Deduplication Problems
• How do we define a chunk?
• Every n bytes, start a new chunk?

• What if we “insert” into the middle? All data shifts right…

• What happens if chunks are really small?
• Hashtable of fingerprints takes up as much space as data

• What if a really popular chunk gets lost/damaged?
• When do we create chunks and check for

duplicates?
• Before we write or after?

• Who saves money when deduplication saves space?

9

Wrapping Up

10

Underlying
Dictionary Structure

put get space

unsorted vector O(n) O(n) O(n)

unsorted list O(n) O(n) O(n)

sorted vector O(n) O(log n) O(n)

balanced BST O(log n) O(log n) O(n)

hash table O(1)* O(1)* O(key range)

Why Data Structures?

*On average---with good design---Don’t forget!

11

Data Structure Selection

• Choice of most appropriate structure
depends on a number of factors
• How much data?

• Static (array) vs dynamic structure (vector/list)

• Which operations will be performed most often?
• Lots of searching? Use an ordered structure

– If items are comparable!

• Mostly traversing in arbitrary order? List
• Process data in order you receive it? Stack/queue

• Is worst case performance crucial? Average case?

12

Why Complexity Analysis?

• Provides performance guarantees
• Captures effects of scaling on time and space

requirements

• Independent of hardware or language
• Can guide appropriate data structure selection

13

Why Correctness Analysis?

• Provides behavior guarantees
• Independent of hardware or language
• Reduce wasted effort developing incorrect

code
• A powerful debugging tool
• Program incorrect: Try to prove it is correct and

see where you get stuck
• Frequently, such proofs are inductive

14

Why Java?

What makes it worth having to type (or read!)

Map<Airport,ComparableAssociation<Integer,
Edge<Airport,Route>>> result = new
Table<Airport,ComparableAssociation<Integer,
Edge<Airport,Route>>>();

15

Why Java?

• Java provides many features to support
• Data abstraction : Interfaces
• Information hiding : public/protected/private
• Modular design : classes
• Code reuse : class extension; abstract classes
• Type safety : types are known at compile-time

• As well as
• Parallelism, security, platform independence,

creation of large software systems, embeddability
in browsers, ...

16

Why structure(5)?

• Provides a well-designed library of the most
widely-used fundamental data structures
• Focus on core aspects of implementation

• Avoids interesting but distracting “fine-tuning” code for
optimization, backwards compatibility, etc

• Allows for easy transition to Java’s own Collection
classes

• Full access to the source code
• Don’t like Duane’s HashMap---change it!

17

Want to Learn More?

• CS 237: Computer Organization
• Learn about the many levels of abstraction from

high-level language à assembly language à
machine language à processor hardware

• CS 256: Algorithm Design and Analysis
• We’ve only scratched the surface of what elegant

algorithm and data structure design can
accomplish. For a deeper dive, go here.

• Many CS electives require one of these two
courses

18

Want to Learn More?

• CS 334: Principles of Programming Languages
• There are many different types of programming

languages: imperative, object-oriented, functional,
list-based, logic, ... Why!? What is required to
support languages of these kinds?

• CS Colloquium
• Weekly (Fridays at 2:30pm) presentations from

active researchers in CS from across the country

19

Thanks!

You’ve worked hard, asked great questions, and
learned a lot!

Well done!

Any Questions?

