CSCI 136
Data Structures &
Advanced Programming

Fall 2017
Lecture 33
The 2070567s

Administrative Details

Reminders
*No lab this week

°Final exam
e Thursday, December 14 at 9:30 in TBL 112
e Study guide, sample exam will be posted online

e TAs available this weekend (see course calendar)
e “Bills review” Tuesday from 1:30-2:30 in Physics 205

Last Time

* Prim’s algorithm wrapup
* Hash tables

* Object.hashCode() maps objects to bins
* Linear probing to resolve collisions

Today’s Outline

e External Chaining to resolve collisions

* Fun hashing applications (not on exam)
e Cuckoo hashing
* Bloom Filters
* Verification/integrity

* Deduplication

One Last Note on Graphs

* |In an undirected graph, each edge connects two
vertices

* Which contributes | to the degree of each of those
vertices

* Since each edge will be counted by two vertices, the

sum of all of the degrees of all vertices is twice the
number of edges

ydeg(v) = 2|E|

Hashtable Core Concept

A hash function maps a key to an index

The index specifies the bin where the key-
value pair should be stored

If two keys hash to the same bin, we have a
collision

Linear probing scans and places the collided
element in the first empty bin, creating a run

* When we remove, must add a placeholder

External Chaining

e |nstead of runs, we store a list in each bin

datal 10, IC 10, 10 10 10 [10, 1
R T T T S
(K,V) KV) | | (KV) | | (KV) (K,V)
(K,V) (K,V) | | (KV) (KV)

(K,V)

* Everything that hashes to bin, goes into list.

* get(), put(), and remove() only need to check one
slot’s list

* No placeholders!

Probing vs. Chaining
What is the performance of:

* put(K, V)

e LP: O(l + run length)

e EC: O(l + chain length)
* get(K)

e LP: O(l + run length)

e EC: O(l + chain length)
e remove(K)

e LP: O(l + run length)

e EC: O(l + chain length)

e Runs/chains are important. Ho do we
control cluster/chain length!?

Load Factor

* Need to keep track of how full the table is
* Why!
* What happens when array fills completely?
e Load factor is a measure of how full the hash
table is
e LF = (# elements) / (table size)
* When LF reaches some threshold, double size
of array (typically threshold = 0.6)
e Challenges?

Doubling Array

e Cannot just copy values
* Why!?
* Hash values may change

e Example: suppose (key.hashCode() =

e |1 %7 =4
e |1 % 13=11I;

* Result: must recompute all hash codes,
reinsert into new array

Good Hashing Functions

* Important point:

 All of this hinges on using “good” hash functions
that spread keys “evenly”

* Good hash functions:
* Are fast to compute

e Distribute keys uniformly

* We almost always have to test “goodness”
empirically

Example Hash Functions

* What are some feasible hash functions for
Strings?
e First char ASCIl value mapping
e 0-255 only

* Not uniform (some letters more popular than others)

e Sum of ASCII characters
* Not uniform - lots of small words

* smile, limes, miles, slime are all the same

Example Hash Functions

e String hash functions commonly use weighted
SUMms
e Character values weighted by position in string

* Long words get bigger codes

* Distributes keys better than non-weighted sum

e Let’s look at different weights...

spelling dictionary (997
buckets)

Hash of all words in UNIX

° ‘@08 M’%Mo % °%00

0%00%%00 & qEe @

0& Fo0 o¢° >0 g |
-4
@& °0®

R o O K0 O%%%%M%@ gs |

P o 00
o@%%? % 009
° T 0% ahe @m?%vww N

o S8 B0,
&«%
P

]

88 . o
sﬁ%ﬁ%oﬁkw

o
Mac > W

O
(o))

charAt(i)

)

S

n=s.length(
i=0

L
-
o0

1
o
—

| | |
O O (]
O e =t o ol —

Aduanbai g

500 600 700 800 900

Bucket

300 400

100 200

0

' s.charAt(i) * 2

90 —
30 | -
70 -
60 -

0 100 200 300 400 500 600 700 800 900
Bucket

' s.charAt(i) * 256

This looks pretty good, but 256' is big...

0
O
I
]

%)
o
I
1

5
Q

L

n
hn
O
1
1

Frequ

0 100 200 300 400 500 600 700 800 900
Bucket

Java uses:

' s.charAt(i) * 31 :

E s.charAt(j) * 31"~

i=0

Frequency

0 100 200 300 400 500 600 700 800 900
Bucket

Hashtables: O(1) operations!?

* How long does it take to compute a String’s
hashCode?

* O(s.length())

* Given an object’s hash code, how long does it
take to find that object?

e O(run length) or O(chain length) PLUS cost of
.equals() method
e Conclusion: for a good hash function (fast,
uniformly distributed) and a low load factor
(short runs/chains), we say hashtables are O(1)

Summary

put get space
unsorted vector O(n) O(n) O(n)
unsorted list O(n) O(n) O(n)
sorted vector O(n) O(log n) O(n)
balanced BST O(log n) | O(log n) O(n)
array indexed by key O(l) O(l) O(key range)

