CSCI 136
Data Structures &
Advanced Programming

Lecture 32
Fall 2017

Instructors: Bills

Last Time

* Adjacency List Implementation Details

e Featuring many lterators!
* More Fundamental Graph Properties

* An Important Algorithm: Minimum-cost
spanning subgraph

Today s Outline

* Finish up Prim’s Algorithm
* More Core Algorithms: Directed Graphs
* Dijkstra’s Algorithm
* Time permitting
e Cycle Detection
e Topological Sorting

Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty
cheap spanning tree), here’s one idea:

Grow lt Greedily!

* Pick a vertex and find its cheapest incident
edge. Now we have a (small) tree

* Repeatedly add the cheapest edge to the tree
that keeps it a tree (connected, no cycles)

* How close might this get us to the MCST?

Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing
algorithm always finds a minimum-cost spanning
tree for any connected graph.

Contrast this with the greedy exam scheduling
algorithm, which does not always find a minimum
coloring

Prim’s Algorithm

prim(G) // finds a MCST of connected G=(V,£)
let v be a vertex of G; set V, &< {vf and V&V, - {v/}
let A be the set of all edges between V, and V,
while(1 V<] V])
let e cheapest edge in A between V, and 'V,
add e to MCST
let u<the vertexof ein 'V,
move ufrom Vyto V;
add to A all edges incident to u
// note: A now may have edges with both ends in 'V,

Prim’s Algorithm (Variant)

* Note: If G is not connected, A will eventually be
empty even though |V,| < |V]
* We fix this by
* Replacing while(|V,| < |V]) with
o while(|V,| < |V|) && A=9)
* Replacing
* until e is an edge between V, and V,
* with
* until Az9 or e is an edge between V, and V,
* Then Prim will find the MCST for the component
containing v

Prim’s Algorithm (Variant)

prim(G) // finds a MCST of connected G=(V,£)
let v be a vertex of G; set V, &< {vf and V&V, - {v}
let A <2 //Awill contain ALL edges between V, and V,
while |V, |<| V] && |A]| >0
add to A all edges incident to v
repeat
remove cheapest edge e from A
until A is empty | | e is an edge between V, and 'V,
if e is an edge between V, and 'V,
let v&the vertex of ein V,
move v from Vyt0 V;

Implementing Prim’s Algorithm

e We'll “build” the MCST by marking its edges
as “‘visited” in G

 We'll “build” V, by marking its vertices visited
* How should we represent A!

* What operations are important to A/
e Add edges

* Remove cheapest edge

e A priority queue!

* When we remove an edge from A, check to
ensure it has one end in each of V, and V,

ComparableEdge Class

* Values in a PriorityQueue need to implement
Comparable

* We wrap edges of the PQ in a class called
ComparableEdge

* |t requires the label used by graph edges to be of
a Comparable type

Prim’s Algorithm (Variant)

prim(G) // finds a MCST of connected G=(V,£)
let v be a vertex of G; set V, &< {vf and V&V, - {v}
let A <2 //Awill contain ALL edges between V, and V,
while |V, |<| V] && |A]| >0
add to A all edges incident to v
repeat
remove cheapest edge e from A
until A is empty | | e is an edge between V, and 'V,
if e is an edge between V, and 'V,
let v&the vertex of ein V,
move v from Vyt0 V; |

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> g
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree

g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;

v = vi.next();

MCST: The Code

// visit the vertex and add all outgoing edges
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {
// turn it into outgoing edge
e = g.getEdge(v,ai.next());
// add the edge to the queue

qg.add(new
ComparableEdge<String,Integer>(e));

MCST: The Code

searching = true;
while (searching && !g.isEmpty()) {
// grab next shortest edge
e = g.remove();
// Is e between V; and V, (subtle code!!)
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {
searching = false;
g.visitEdge(g.getEdge(e.here(),
e.there()));

}

} while (!searching);

Prim : Space Complexity

Graph: O(|V| + |E|)
e Each vertex and edge uses a constant amount of
space

Priority Queue O(|E|)
e Each edge takes up constant amount of space

Every other object (including the neighbor
iterator) uses a constant amount of space

Result: O(|V| + |E[)
e Optimal in Big-O sense!

Prim : Time Complexity

Assume Map ops are O(|) time (not quite true!)
For each iteration of do ... while loop

* Add neighbors to queue: O(deg(v) log |E|)
* |terator operations are O(l) [Why!]
* Adding an edge to the queue is O(log |E|)

* Find next edge: O(# edges checked * log |E|)
 Removing an edge from queue is O(log |E|) time

* All other operations are O(1) time

Prim : Time Complexity

Over all iterations of do ... while loop

Step |: Add neighbors to queue:
* For each vertex, it's O(deg(v) log |E|) time

* Adding over all vertices gives

Y deg(n)logl El=loglEIY _deg(v)=log| EI*2|E

e which is O(|E| log |E[) = O([E| log [V])
e |E| <|[V|? ,s0 log |E| < log V|2 = 2 log [V| = O(log [V])

Prim : Time Complexity

Over dll iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)

* Each edge is checked at most once
e Adding over all edges gives O(|E| log |E|) again
Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log |V|)
e Typically written as O(m log n)
* Where m= |E| and n = |V|

Single Source Shortest Paths

The Problem: Given a graph G and a starting
vertex v, find, for each vertex u#v reachable
from v, a shortest path from v to u.

*The Single Source Shortest Paths Problem

*Arises in many contexts, including network
communications

*Uses edge weights (but we’ll call them
“lengths”): assume they are non-negative
numbers

*Could be a directed or undirected graph

Single Source Shortest Paths

We'll look at directed graphs
* So the paths must be directed paths

Let’s think....

Suppose we have a set shortest paths {P, :
u#v}, where P, is a shortest path from v to u

Let H be the subgraph of G consisting of each

vertex of G along with all of the edges in each
P

u

What can we say about H?

20

Single Source Shortest Paths

Observations

* If some vertex u has in-degree greater than |,
we can drop one of the incoming edges: Why?

* Only the last edge of the shortest path from v-u is
needed as an in-edge to u [Why!]

* So we assume H has in-deg(u)=1 for all uzv
* We need no in-edges for v [Why!]
 H can’t have any directed cycles
* Well, v can’t be on any cycles (in-deg(v) = 0)

* |f there were a cycle, some vertex on it would
have in-degree > | [Why!]

21

Single Source Shortest Paths

Observations

* In fact, even disregarding edge directions,
there would be no cycles

* Some vertex would have in-degree at least 2
* Or else there’s a directed cycle (Why?)

e So, we can assume that there is some set of
shortest paths that forms a (directed) tree

* This suggests that we try again to
Greedily grow a tree

* The question is: How!

22

The Right Kind of Greed

e Build a MCST?

* No: It won'’t always give shortest paths

* A start: take shortest edge from start vertex s

e That must be a shortest path!

* And now we have a small tree of shortest paths

* What next!

* Design an algorithm thinking inductively

e Suppose we have found a tree T, that has shortest
paths from s to the k-1 vertices “closest” to s

* What vertex would we want to add next!?

23

Finding the Best Vertex to Add to T,

Not all edges are displayed

Question: Can we find the next closest vertex to s?

24

What’s a Good Greedy Choice!

QO |dea: Pick edge e from
O uinT,tovin G-T, that

() S/
e&'ﬁ“ minimizes the length
W‘. © O @ | ofthetree pathfroms
o \.s‘ up to—and through—e
Nowaddvandeto T,
to get tree T,,;

Now T,,, is a tree consisting of shortest paths from s to the
k vertices closest to s! [Proof?] Repeat until k = |V|

25

Some Notation Reminders

* |(e) : length (weight) of edge e
e d(u,v): distance fromutov
* Length of shortest path from u to v

« The priority queue stores an estimate of the distance from
s to w by storing, for some edge (v,w), d(s,v) + I(v,w)
« The estimate is always an upper bound on d(s,w)

26

Dijkstra: What Do We Return!?

* As we find a new vertex v to add to the tree
of shortest paths, add edges e=(v,w) to a map.

* Precisely:
e Use the PQ association(X,Y) edgelnfo where
e Xis d(s,v) *+ I(v,w)
* Y is the edge e=(v,w)
* Add the key/value pair (w, edgelnfo) to the map

* So the map entry with key w tells us the edge
the best path used to get from the tree to w

27

Dijkstra’s Algorithm

Dykstra(G, s) /7 l(e) is the length of edge e

let 1< ({5}, 2) and PQ be an empry priority queue
Jor each neighbor v of s, add edge (s,v) to PQ with priority [(e)
while T doesn t have all vertices of G and PQ is non-empty

repeat

e & PQ.removeMin() /7 skip edges with both
until PQ is empty ore=(uwv) forus1, v& 1 // endsin T’
if e=(wv)forucsl, vl

add e (andv)w T

for each neighbor w of v
add edge (v,w) to PQ with weight/key d(s,v) + [(v,w) 54

Seattle

100

[Portland }

LA

B

2800

Denver

Dijkstra's Algorithm

Boston

Atlanta }

29

Seattle

2800

100

[Portland }

. 1000
SF

0
w

Denver

Priority Queue

—

600

Boston

Atlanta }

30

Seattle

2800

100

[Portland }

. 1000
SF

0
w

Denver

Priority Queue

—

600

Boston

Atlanta }

31

Seattle 2800

100

[Portland }
500

Denver

Current: 500 SF->Port (need to add Port’ s neighbors to PQ)

:> SF->Den; SF->Dal
1000 1500

Boston

Atlanta }

32

Seattle

2800

100

[Portland }
500

Denver

m

Current: 500 SF->Port
:> : SF->Den;

1000

SF->Dal
1500

Boston

Atlanta }

33

Seattle

2800

600
100

[Portland }
500

Denver

m

Current: 600 SF->Port->Sea

:> SF->Den; SF->Dal
1000 1500

Boston

Atlanta }

34

Seattle

2800

600
100

[Portland }
500

Denver

m

Current: 600 SF->Port->Sea

:> SF->Den; SF->Dal;
1000 1500

Boston

Atlanta }

35

Seattle

2800

600
100

[Portland }
500

Denver

m

Current: 1000 SF->Den

:> SF->Dal; SF->Port->Sea->Bos
1500 3400

Boston

Atlanta }

36

Seattle

2800

600
100

[Portland }
500

Denver

m

Current: 1000 SF->Den
:> SF->Dal;

1500

Boston

.
’

Atlanta }

SF->Port->Sea->Bos
3400

37

Seattle

2800

600
100

[Portland }
500

Denver

m

Current: 1500 SF->Dal

— SF->Den->Dal; SF->Den->Chi;
1700 1900

1500

SF->Port->Sea->Bos
3400

Boston

Atlanta }

38

Seattle

2800

600
100

[Portland }
500

1000 Denver

0
w

Current: 1500 SF->Dal

:>SF->Den->DaI; SF->Den->Chi;
1700 1900

1500

600

.
’

Boston

Atlanta }

SF->Port->Sea->Bos
3400

39

Seattle 2800

600 BOSton
100
[Portland }
500

Denver

0
Atlanta }
s
1500
Current: 1700 SF->Den->Dal (we already have Dallas!)
— SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos

1900 2200 2700 3400

40

Seattle

2800

600
100

[Portland }
500

Denver

m

Chicago
1900

900

Current: 1900 SF->Den->Chi

:> SF->Dal->Atl; SF->Dal->LA;
2200 2700 3400

1500

SF->Port->Sea->Bos

Boston

Atlanta }

41

Seattle 2800

600 Boston
100
[Portland }
500 500 Chicago

1900

Denver

0
Atlanta }
w
1500
Current: 1900 SF->Den->Chi
— SF->Dal->Atl; ; SF->Dal->LA; SF->Port->Sea->Bos

2200 2700 3400

42

Seattle 2800

600 Boston
100
[Portland }
500 500 Chicago

1900

Denver

Atlanta }
2200

LA 1200

Current: 2200 SF->Dal->Atl

700

1500

:> SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400

43

Seattle

2800

600
100

[Portland }
500

900

Denver

LA 1200

Chicago

1900

1500

Current: 2200 SF->Dal->Atl

:> SF->Den->Chi->Atl; SF->Dal->LA;
2500 2700

700

.
’

Boston

Atlanta }
2200

SF->Port->Sea->Bos
3400

44

Seattle 2800

600 Boston
100
[Portland }
500 500 Chicago

1900

Denver

Atlanta }
2200

LA 1200

Current: 2500 SF->Den->Chi->Atl

700

1500

:> SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2700 3000 3400

45

Seattle

2800

600
100

[Portland }

Chicago
900 &

1900

2700
Current: 2700 SF->Dal->LA

— SF->Dal->Atl->NY;
3000

1500

SF->Port->Sea->Bos
3400

700

Boston

Atlanta }
2200

46

Seattle

2800

600
100

[Portland }

Chicago
900 &

1900

m

2700
Current: 3000 SF->Dal->Atl->NY

:> SF->Port->Sea->Bos
3400

1500

700

Boston

Atlanta }
2200

47

Seattle 2800

600
100
[Portland }
500 500 Chicago

1900

m

2700 1500
Current: 3000 SF->Dal->Atl->NY

:> : SF->Port->Sea->Bos
3400

700

Boston

Atlanta }
2200

48

Seattle 2800

600
100
[Portland }
500 900

Denver

LA 1200

2700 1500
Current: 3200 SF->Dal->Atl->NY->Bos

:> SF->Port->Sea->Bos
3400

Chicago

1900

700

Boston

Atlanta }

2200

49

Seattle

2800

600
100

[Portland }
500

Denver

LA 1200

Chicago
900 &

1900

2700

Current: 3400 SF->Port->Sea->Bos

—

1500

700

Boston

Atlanta }
2200

50

Seattle

600
100

[Portland }
500

2800

Denver

2700

Current;

—

1500

700

Boston

Atlanta }
2200

51

Dijkstra: Space Complexity

Graph: O(|V| + |E|)
e Each vertex and edge uses a constant amount of
space

Priority Queue O(|E|)

e Each edge takes up constant amount of space
Are there any hidden space costs!?

Result: O(|V| + |E|)

e Optimal in Big-O sense!

52

Dijkstra : Time Complexity

Assume Map ops are O(|) time

Across all iterations of outer while loop

* Edges are added to and removed from the
priority queue

* But any edge is added (and removed) at most
once!

* Total PQ operation cost is O(|E| log |E|) time
e Which is O(|E| log |V|) time
* All other operations take constant time

* Thus time complexity is O(|E| log |V])

53

