
CSCI 136
Data Structures &

Advanced Programming

Lecture 32
Fall 2017

Instructors: Bills

2

Last Time

• Adjacency List Implementation Details
• Featuring many Iterators!

• More Fundamental Graph Properties

• An Important Algorithm: Minimum-cost
spanning subgraph

3

Today’s Outline

• Finish up Prim’s Algorithm
• More Core Algorithms: Directed Graphs
• Dijkstra’s Algorithm
• Time permitting

• Cycle Detection
• Topological Sorting

4

Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree

that keeps it a tree (connected, no cycles)

• How close might this get us to the MCST?

5

Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing
algorithm always finds a minimum-cost spanning
tree for any connected graph.

Contrast this with the greedy exam scheduling
algorithm, which does not always find a minimum
coloring

6

Prim’s Algorithm
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A be the set of all edges between V1 and V2

while(|V1|<|V|)
let eßcheapest edge in A between V1 and V2

add e to MCST
let ußthe vertex of e in V2

move u from V2 to V1;
add to A all edges incident to u
// note: A now may have edges with both ends in V1

7

Prim’s Algorithm (Variant)
• Note: If G is not connected, A will eventually be

empty even though |V1| < |V|
• We fix this by

• Replacing while(|V1| < |V|) with
• while(|V1| < |V|) && A≠∅)

• Replacing
• until e is an edge between V1 and V2

• with
• until A≠∅ or e is an edge between V1 and V2

• Then Prim will find the MCST for the component
containing v

8

Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;

9

Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges
as “visited” in G

• We’ll “build” V1 by marking its vertices visited
• How should we represent A?
• What operations are important to A?

• Add edges
• Remove cheapest edge

• A priority queue!

• When we remove an edge from A, check to
ensure it has one end in each of V1 and V2

10

ComparableEdge Class

• Values in a PriorityQueue need to implement
Comparable

• We wrap edges of the PQ in a class called
ComparableEdge
• It requires the label used by graph edges to be of

a Comparable type

11

Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;

12

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree
g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();

13

MCST: The Code

do {
// visit the vertex and add all outgoing edges
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {

// turn it into outgoing edge
e = g.getEdge(v,ai.next());
// add the edge to the queue
q.add(new
ComparableEdge<String,Integer>(e));

}
...

14

MCST: The Code
searching = true;
while (searching && !q.isEmpty()) {

// grab next shortest edge
e = q.remove();
// Is e between V1 and V2 (subtle code!!)
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);

15

Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!

16

Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop

• Add neighbors to queue: O(deg(v) log |E|)
• Iterator operations are O(1) [Why?]
• Adding an edge to the queue is O(log |E|)

• Find next edge: O(# edges checked * log |E|)
• Removing an edge from queue is O(log |E|) time
• All other operations are O(1) time

17

Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:
• For each vertex, it’s O(deg(v) log |E|) time
• Adding over all vertices gives

• which is O(|E| log |E|) = O(|E| log |V|)
• |E| ≤|V|2 ,so log |E| ≤ log |V|2 = 2 log |V| = O(log |V|)

deg(v)log | E |
v∈V∑ = log | E | deg(v)

v∈V∑ = log | E | *2 | E |

18

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)
• Each edge is checked at most once
• Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log |V|)
• Typically written as O(m log n)

• Where m= |E| and n = |V|

19

Single Source Shortest Paths
The Problem: Given a graph G and a starting
vertex v, find, for each vertex u≠v reachable
from v, a shortest path from v to u.

•The Single Source Shortest Paths Problem
•Arises in many contexts, including network
communications
•Uses edge weights (but we’ll call them
“lengths”): assume they are non-negative
numbers
•Could be a directed or undirected graph

20

Single Source Shortest Paths

• We’ll look at directed graphs
• So the paths must be directed paths

• Let’s think....

• Suppose we have a set shortest paths {Pu :
u≠v}, where Pu is a shortest path from v to u

• Let H be the subgraph of G consisting of each
vertex of G along with all of the edges in each
Pu

• What can we say about H?

21

Single Source Shortest Paths

Observations
• If some vertex u has in-degree greater than 1,

we can drop one of the incoming edges: Why?
• Only the last edge of the shortest path from v-u is

needed as an in-edge to u [Why?]
• So we assume H has in-deg(u)=1 for all u≠v

• We need no in-edges for v [Why?]

• H can’t have any directed cycles
• Well, v can’t be on any cycles (in-deg(v) = 0)
• If there were a cycle, some vertex on it would

have in-degree > 1 [Why?]

22

Single Source Shortest Paths
Observations
• In fact, even disregarding edge directions,

there would be no cycles
• Some vertex would have in-degree at least 2

• Or else there’s a directed cycle (Why?)

• So, we can assume that there is some set of
shortest paths that forms a (directed) tree

• This suggests that we try again to
Greedily grow a tree

• The question is: How?

23

The Right Kind of Greed

• Build a MCST?
• No: It won’t always give shortest paths

• A start: take shortest edge from start vertex s
• That must be a shortest path!
• And now we have a small tree of shortest paths

• What next?
• Design an algorithm thinking inductively
• Suppose we have found a tree Tk that has shortest

paths from s to the k-1 vertices “closest” to s
• What vertex would we want to add next?

24

Finding the Best Vertex to Add to Tk

Not all edges are displayed

Question: Can we find the next closest vertex to s?

25

What’s a Good Greedy Choice?

Idea: Pick edge e from
u in Tk to v in G-Tk that
minimizes the length
of the tree path from s
up to–and through–e

Now add v and e to Tk
to get tree Tk+1

Now Tk+1 is a tree consisting of shortest paths from s to the
k vertices closest to s! [Proof?] Repeat until k = |V|

26

Some Notation Reminders

• l(e) : length (weight) of edge e
• d(u,v) : distance from u to v

• Length of shortest path from u to v

• The priority queue stores an estimate of the distance from
s to w by storing, for some edge (v,w), d(s,v) + l(v,w)

• The estimate is always an upper bound on d(s,w)

27

Dijkstra: What Do We Return?

• As we find a new vertex v to add to the tree
of shortest paths, add edges e=(v,w) to a map.

• Precisely:
• Use the PQ association(X,Y) edgeInfo where

• X is d(s,v) + l(v,w)
• Y is the edge e=(v,w)

• Add the key/value pair (w, edgeInfo) to the map

• So the map entry with key w tells us the edge
the best path used to get from the tree to w

28

Dijkstra’s Algorithm
Dijkstra(G, s) // l(e) is the length of edge e
let Tß({s}, ∅) and PQ be an empty priority queue
for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all vertices of G and PQ is non-empty

repeat
e ß PQ.removeMin() // skip edges with both

until PQ is empty or e=(u,v) for u∈T, v ∉ T // ends in T
if e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)

29

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

Dijkstra's Algorithm

30

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Priority Queue

31

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Port; SF->Den; SF->Dal
500 1000 1500

Priority Queue

32

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal
1000 1500

Current: 500 SF->Port (need to add Port’s neighbors to PQ)

500

33

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Port->Sea; SF->Den; SF->Dal
600 1000 1500

Current: 500 SF->Port

500

34

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal
1000 1500

Current: 600 SF->Port->Sea

500

600

35

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal; SF->Port->Sea->Bos
1000 1500 3400

Current: 600 SF->Port->Sea

500

600

36

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Dal; SF->Port->Sea->Bos
1500 3400

Current: 1000 SF->Den

500

600

1000

37

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1000 SF->Den

500

600

1000

SF->Dal; SF->Den->Dal; SF->Den->Chi; SF->Port->Sea->Bos
1500 1700 1900 3400

38

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1500 SF->Dal

500

600

1000

1500

SF->Den->Dal; SF->Den->Chi; SF->Port->Sea->Bos
1700 1900 3400

39

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1500 SF->Dal

500

600

1000

1500

SF->Den->Dal; SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
1700 1900 2200 2700 3400

40

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
1900 2200 2700 3400

Current: 1700 SF->Den->Dal (we already have Dallas!)

500

600

1000

1500

41

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1900 SF->Den->Chi

500

600

1000

1500

SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2200 2700 3400

1900

42

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1900 SF->Den->Chi

500

600

1000

1500

1900

SF->Dal->Atl; SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2200 2500 2700 3400

43

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2200 SF->Dal->Atl

500

600

1000

1500

1900

2200

SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400

44

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2200 SF->Dal->Atl

500

600

1000

1500

1900

2200

SF->Den->Chi->Atl; SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2500 2700 3000 3400

45

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2500 SF->Den->Chi->Atl

500

600

1000

1500

1900

2200

SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2700 3000 3400

46

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2700 SF->Dal->LA

500

600

1000

1500

1900

2200

2700

SF->Dal->Atl->NY; SF->Port->Sea->Bos
3000 3400

47

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3000 SF->Dal->Atl->NY

500

600

1000

1500

1900

2200

2700

3000

SF->Port->Sea->Bos
3400

48

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3000 SF->Dal->Atl->NY

500

600

1000

1500

1900

2200

2700

3000

SF->Dal->Atl->NY->Bos; SF->Port->Sea->Bos
3200 3400

49

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3200 SF->Dal->Atl->NY->Bos

500

600

1000

1500

1900

2200

2700

3000

3200

SF->Port->Sea->Bos
3400

50

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3400 SF->Port->Sea->Bos

500

600

1000

1500

1900

2200

2700

3000

3200

51

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current:

500

600

1000

1500

1900

2200

2700

3000

3200

52

Dijkstra: Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Are there any hidden space costs?

• Result: O(|V| + |E|)
• Optimal in Big-O sense!

53

Dijkstra : Time Complexity

Assume Map ops are O(1) time
Across all iterations of outer while loop

• Edges are added to and removed from the
priority queue
• But any edge is added (and removed) at most

once!
• Total PQ operation cost is O(|E| log |E|) time

• Which is O(|E| log |V|) time

• All other operations take constant time

• Thus time complexity is O(|E| log |V|)

