CSCI 136
 Data Structures \&
 Advanced Programming

Lecture 32
Fall 2017
Instructors: Bills

Last Time

- Adjacency List Implementation Details
- Featuring many Iterators!
- More Fundamental Graph Properties
- An Important Algorithm: Minimum-cost spanning subgraph

Today's Outline

- Finish up Prim's Algorithm
- More Core Algorithms: Directed Graphs
- Dijkstra's Algorithm
- Time permitting
- Cycle Detection
- Topological Sorting

Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here's one idea:

Grow It Greedily!

- Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
- Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
- How close might this get us to the MCST?

Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does not always find a minimum coloring

Prim's Algorithm

prim $(G) / /$ finds a MCST of connected $G=(V, E)$
let v be a vertex of G; set $V_{1} \leftarrow\{v\}$ and $V_{2} \leftarrow V_{1-}\{v\}$ let A be the set of all edges between V_{1} and V_{2} while($\left.\left|V_{l}\right|<|V|\right)$
let $e \leftarrow$ cheapest edge in A between V_{1} and V_{2} add e to MCST
let $u \leftarrow$ the vertex of e in V_{2}
move u from V_{2} to V_{1};
add to A all edges incident to u
// note: A now may have edges with both ends in V_{I}

Prim's Algorithm (Variant)

- Note: If G is not connected, A will eventually be empty even though $\left|\mathrm{V}_{\mathrm{l}}\right|<|\mathrm{V}|$
- We fix this by
- Replacing while($\left.\left|V_{l}\right|<|V|\right)$ with
- while($\left.\left.\left|V_{l}\right|<|V|\right) \& \& A \neq \varnothing\right)$
- Replacing
- until e is an edge between V_{1} and V_{2}
- with
- until $A \neq \varnothing$ or e is an edge between V_{1} and V_{2}
- Then Prim will find the MCST for the component containing v

Prim's Algorithm (Variant)

prim $(G) / /$ finds a MCST of connected $G=(V, E)$
let v be a vertex of G; set $V_{1} \leftarrow\{v\}$ and $V_{2} \leftarrow V_{1}-\{v\}$
let $A \leftarrow \varnothing \quad / / A$ will contain $A L L$ edges between V_{1} and V_{2} while $\left|V_{I}\right|<|V| \& \&|A|>0$
add to A all edges incident to v repeat
remove cheapest edge efrom A
until A is empty $\|$ is an edge between V_{1} and V_{2}
if e is an edge between V_{1} and V_{2}

$$
\begin{aligned}
& \text { let } v \leftarrow \text { the vertex of e in } V_{2} \\
& \text { move v from } V_{2} \text { to } V_{1} ;
\end{aligned}
$$

Implementing Prim's Algorithm

- We'll "build" the MCST by marking its edges as "visited" in G
- We’ll "build" V_{1} by marking its vertices visited
- How should we represent A ?
- What operations are important to A ?
- Add edges
- Remove cheapest edge
- A priority queue!
- When we remove an edge from A , check to ensure it has one end in each of V_{1} and V_{2}

ComparableEdge Class

- Values in a PriorityQueue need to implement Comparable
- We wrap edges of the PQ in a class called ComparableEdge
- It requires the label used by graph edges to be of a Comparable type

Prim's Algorithm (Variant)

prim $(G) / /$ finds a MCST of connected $G=(V, E)$
let v be a vertex of G; set $V_{1} \leftarrow\{v\}$ and $V_{2} \leftarrow V_{1}-\{v\}$
let $A \leftarrow \varnothing \quad / / A$ will contain $A L L$ edges between V_{1} and V_{2} while $\left|V_{I}\right|<|V| \& \&|A|>0$
add to A all edges incident to v repeat
remove cheapest edge e from A
until A is empty $\|$ is an edge between V_{1} and V_{2}
if e is an edge between V_{1} and V_{2}

$$
\begin{align*}
& \text { let } v \leftarrow \text { the vertex of e in } V_{2} \\
& \text { move v from } V_{2} \text { to } V_{1} ; \tag{11}
\end{align*}
$$

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q = new SkewHeap<ComparableEdge<String,Integer>>();

String v = null;	// current vertex
Edge<String,Integer> e; // current edge	
boolean searching;	// still building tree
g.reset();	// clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();

MCST: The Code

do \{

```
// visit the vertex and add all outgoing edges
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {
    // turn it into outgoing edge
    e = g.getEdge(v,ai.next());
    // add the edge to the queue
    q.add(new
```

 ComparableEdge<String,Integer>(e));
 \}

MCST: The Code

```
searching = true;
while (searching && !q.isEmpty()) {
    // grab next shortest edge
    e = q.remove();
    // Is e between }\mp@subsup{V}{1}{}\mathrm{ and }\mp@subsup{V}{2}{}\mathrm{ (subtle code!!)
    v = e.there();
    if (g.isVisited(v)) v = e.here();
    if (!g.isVisited(v)) {
                        searching = false;
                        g.visitEdge(g.getEdge(e.here(),
                            e.there()));
    }
}
\} while (!searching);
```


Prim : Space Complexity

- Graph: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Each vertex and edge uses a constant amount of space
- Priority Queue O(|E|)
- Each edge takes up constant amount of space
- Every other object (including the neighbor iterator) uses a constant amount of space
- Result: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Optimal in Big-O sense!

Prim : Time Complexity

Assume Map ops are $\mathrm{O}(\mathrm{I})$ time (not quite true!)
For each iteration of do ... while loop

- Add neighbors to queue: $O(\operatorname{deg}(v) \log |E|)$
- Iterator operations are O(I) [Why?]
- Adding an edge to the queue is $\mathrm{O}(\log |\mathrm{E}|)$
- Find next edge: $\mathrm{O}\left(\#\right.$ edges checked $\left.{ }^{*} \log |\mathrm{E}|\right)$
- Removing an edge from queue is $\mathrm{O}(\log |\mathrm{E}|)$ time
- All other operations are $\mathrm{O}(\mathrm{I})$ time

Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:

- For each vertex, it's $O(\operatorname{deg}(v) \log |E|)$ time
- Adding over all vertices gives

$$
\sum_{v \in V} \operatorname{deg}(v) \log |E|=\log |E| \sum_{v \in V} \operatorname{deg}(v)=\log |E| * 2|E|
$$

- which is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$
- $|\mathrm{E}| \leq|\mathrm{V}|^{2}$, so $\log |\mathrm{E}| \leq \log |\mathrm{V}|^{2}=2 \log |\mathrm{~V}|=\mathrm{O}(\log |\mathrm{V}|)$

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: $\mathrm{O}(\#$ edges checked * $\log |\mathrm{E}|)$

- Each edge is checked at most once
- Adding over all edges gives $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$ again

Thus, overall time complexity (worst case) of Prim's Algorithm is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

- Typically written as $\mathrm{O}(\mathrm{m} \log \mathrm{n})$
- Where $m=|E|$ and $n=|V|$

Single Source Shortest Paths

The Problem: Given a graph G and a starting vertex v, find, for each vertex $u \neq v$ reachable from v, a shortest path from v to u.

- The Single Source Shortest Paths Problem
-Arises in many contexts, including network communications
-Uses edge weights (but we'll call them "lengths"): assume they are non-negative numbers
-Could be a directed or undirected graph

Single Source Shortest Paths

- We'll look at directed graphs
- So the paths must be directed paths
- Let's think....
- Suppose we have a set shortest paths $\left\{\mathrm{P}_{\mathrm{u}}\right.$: $u \neq v\}$, where P_{u} is a shortest path from v to u
- Let H be the subgraph of G consisting of each vertex of G along with all of the edges in each P_{u}
- What can we say about H?

Single Source Shortest Paths

Observations

- If some vertex u has in-degree greater than I, we can drop one of the incoming edges: Why?
- Only the last edge of the shortest path from $v-u$ is needed as an in-edge to u [Why?]
- So we assume H has in- $\operatorname{deg}(u)=I$ for all $u \neq v$
- We need no in-edges for v [Why?]
- H can't have any directed cycles
- Well, v can't be on any cycles (in-deg(v) $=0$)
- If there were a cycle, some vertex on it would have in-degree > I [Why?]

Single Source Shortest Paths

Observations

- In fact, even disregarding edge directions, there would be no cycles
- Some vertex would have in-degree at least 2
- Or else there's a directed cycle (Why?)
- So, we can assume that there is some set of shortest paths that forms a (directed) tree
- This suggests that we try again to
Greedily grow a tree
- The question is: How?

The Right Kind of Greed

- Build a MCST?
- No: It won't always give shortest paths
- A start: take shortest edge from start vertex s
- That must be a shortest path!
- And now we have a small tree of shortest paths
- What next?
- Design an algorithm thinking inductively
- Suppose we have found a tree T_{k} that has shortest paths from s to the k-l vertices "closest" to s
- What vertex would we want to add next?

Finding the Best Vertex to Add to T_{k}

Not all edges are displayed

Question: Can we find the next closest vertex to s?

What's a Good Greedy Choice?

Idea: Pick edge e from u in T_{k} to v in $G-T_{k}$ that minimizes the length of the tree path from s up to-and through-e

Now add v and e to T_{k} to get tree $\mathrm{T}_{\mathrm{k}+1}$

Now T_{k+1} is a tree consisting of shortest paths from s to the k vertices closest to s ! [Proof?] Repeat until $\mathrm{k}=|\mathrm{V}|$

Some Notation Reminders

- I(e) : length (weight) of edge e
- $\mathrm{d}(\mathrm{u}, \mathrm{v})$: distance from u to v
- Length of shortest path from u to v
- The priority queue stores an estimate of the distance from s to w by storing, for some edge $(\mathrm{v}, \mathrm{w}), \mathrm{d}(\mathrm{s}, \mathrm{v})+\mathrm{l}(\mathrm{v}, \mathrm{w})$
- The estimate is always an upper bound on $\mathrm{d}(\mathrm{s}, \mathrm{w})$

Dijkstra: What Do We Return?

- As we find a new vertex v to add to the tree of shortest paths, add edges $\mathrm{e}=(\mathrm{v}, \mathrm{w})$ to a map.
- Precisely:
- Use the PQ association(X, Y) edgelnfo where
- X is $d(s, v)+l(v, w)$
- Y is the edge $e=(v, w)$
- Add the key/value pair (w, edgelnfo) to the map
- So the map entry with key w tells us the edge the best path used to get from the tree to w

Dijkstra's Algorithm

Dïkstra (G, s) // l(e) is the length of edge e let $T \leftarrow(\{s\}, \varnothing)$ and $P Q$ be an empty priority queue for each neighborv ofs, add edge (s, v) to $P Q$ with priority $l(e)$ while T doesn't have all vertices of G and $P Q$ is non-empty repeat $e \leftarrow P($.removeMin() // skip edges with both until $P Q$ is empty or $e=(u, v)$ for $u \in T, v \notin T / /$ ends in T

$$
\text { if } e=(u, v) \text { for } u \in T, v \notin T
$$

adde (andv) to T
for each neighbor w ofv

Dijkstra's Algorithm

Priority Queue

Priority Queue

Current: 500 SF->Port (need to add Port's neighbors to PQ)

\Rightarrow| \Rightarrow SF->Den; | SF->Dal |
| :--- | :--- |
| 1000 | 1500 |

Current: 500 SF->Port

\Longrightarrow| SF->Port->Sea; | SF->Den;
 600 |
| :--- | :--- |
| 1000 | SF->Dal |
| | 1500 |

Current: 600 SF->Port->Sea
$\Longrightarrow \underset{\substack{1000}}{\left.\text { SF->Den; } \quad \begin{array}{l}\text { SF->Dal } \\ 1500\end{array}\right)}$

Current: 600 SF->Port->Sea

Current: 1000 SF->Den

$$
\Rightarrow \begin{array}{ll}
\Rightarrow \text { SF->Dal; } & \text { SF->Port->Sea->Bos } \\
\text { I500 } & 3400
\end{array}
$$

Current: 1000 SF->Den
\Rightarrow SF->Dal; 1500

SF->Den->Dal;
1700

SF->Den->Chi; 1900

SF->Port->Sea->Bos 3400

Current: I500 SF->Dal

\Rightarrow| SF->Den->Dal; | SF->Den->Chi; | SF->Port->Sea->Bos |
| :--- | :--- | :--- |
| I700 | 1900 | 3400 |

Current: I500 SF->Dal

\Rightarrow| SF->Den->Dal; | SF--PDen->Chi; | SF->Dal->Atl; | SF->Dal->LA; | SF--PPort->Sea->Bos |
| :--- | :--- | :--- | :--- | :--- |
| I700 | 1900 | 2200 | 2700 | 3400 |

Current: I700 SF->Den->Dal (we already have Dallas!)

\Rightarrow| SF->Den->Chi; | SF->Dal->At; $;$ | SF->Dal->LA; | SF->Port->Sea->Bos |
| :--- | :--- | :--- | :--- |
| 1900 | 2200 | 2700 | 3400 |

Current: 1900 SF->Den->Chi

\Rightarrow| SF->Dal->AtI; | SF->Dal->LA;
 2200 | 2700 3400\quad SF->Port->Sea->Bos |
| :--- | :--- | :--- |

Current: 1900 SF->Den->Chi
$\Longrightarrow \underset{2200}{\text { SF->Dal->Atl; }}$
SF->Den->Chi->Atl;
SF->Dal->LA;
SF->Port->Sea->Bos 2500 2700 3400

Current: 2200 SF->Dal->Atl
\Rightarrow SF->Den->Chi->AtI;
2500 SF->Dal->LA;
SF->Port->Sea->Bos 3400

Current: 2200 SF->Dal->Atl
\Rightarrow
SF->Den->Chi->Atl;
2500 SF->Dal->LA;
2700
SF->Dal->Atl->NY;
SF->Port->Sea->Bos 3000 3400

Current: 2500 SF->Den->Chi->At|
$\Longrightarrow \underset{2700}{\text { SF->Dal->LA; }}$
SF->Dal->Atl->NY; SF->Port->Sea->Bos 3000 3400

Current: 3000 SF->Dal->Atl->NY

\Longrightarrow| 3400 |
| :--- |
| SF->Port->Sea->Bos |

\square
SF->Dal->Atl->NY->Bos;
3200 SF->Port->Sea->Bos
3400

Current: 3200 SF->Dal->Atl->NY->Bos

\Longrightarrow| 3400 |
| :--- |
| SF->Port->Sea->Bos |

Dijkstra: Space Complexity

- Graph: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Each vertex and edge uses a constant amount of space
- Priority Queue O(|E|)
- Each edge takes up constant amount of space
- Are there any hidden space costs?
- Result: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Optimal in Big-O sense!

Dijkstra : Time Complexity

Assume Map ops are $\mathrm{O}(\mathrm{I})$ time
Across all iterations of outer while loop

- Edges are added to and removed from the priority queue
- But any edge is added (and removed) at most once!
- Total PQ operation cost is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$ time
- Which is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ time
- All other operations take constant time
- Thus time complexity is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

