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Last Time

• Adjacency List Implementation Details
• Featuring many Iterators!

• More Fundamental Graph Properties

• An Important Algorithm: Minimum-cost 
spanning subgraph
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Today’s Outline

• Finish up Prim’s Algorithm
• More Core Algorithms: Directed Graphs
• Dijkstra’s Algorithm
• Time permitting

• Cycle Detection
• Topological Sorting
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Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty 
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident 

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree 

that keeps it a tree (connected, no cycles)

• How close might this get us to the MCST?
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Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing 
algorithm always finds a minimum-cost spanning 
tree for any connected graph.

Contrast this with the greedy exam scheduling 
algorithm, which does not always find a minimum 
coloring
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Prim’s Algorithm
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A be the set of all edges between V1 and V2

while(|V1|<|V|)
let eßcheapest edge in A between V1 and V2

add e to MCST
let ußthe vertex of e in V2

move u from V2 to V1;
add to A all edges incident to u
// note: A now may have edges with both ends in V1
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Prim’s Algorithm (Variant)
• Note: If G is not connected, A will eventually be 

empty even though |V1| < |V|
• We fix this by

• Replacing while(|V1| < |V|) with
• while(|V1| < |V|) && A≠∅)

• Replacing
• until e is an edge between V1 and V2

• with
• until A≠∅ or e is an edge between V1 and V2

• Then Prim will find the MCST for the component 
containing v
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Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;
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Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges 
as “visited” in G

• We’ll “build” V1 by marking its vertices visited
• How should we represent A?
• What operations are important to A?

• Add edges
• Remove cheapest edge

• A priority queue!

• When we remove an edge from A, check to 
ensure it has one end in each of V1 and V2
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ComparableEdge Class

• Values in a PriorityQueue need to implement 
Comparable

• We wrap edges of the PQ in a class called 
ComparableEdge
• It requires the label used by graph edges to be of 

a Comparable type
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Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;
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MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null;        // current vertex                                  
Edge<String,Integer> e; // current edge                                    
boolean searching;      // still building tree
g.reset();              // clear visited flags                             

// select a node from the graph, if any                                    
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();
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MCST: The Code

do {
// visit the vertex and add all outgoing edges                         
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {

// turn it into outgoing edge                                      
e = g.getEdge(v,ai.next());
// add the edge to the queue                                       
q.add(new
ComparableEdge<String,Integer>(e));

}
...
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MCST: The Code
searching = true;
while (searching && !q.isEmpty()) {

// grab next shortest edge 
e = q.remove();
// Is e between V1 and V2 (subtle code!!)
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);
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Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor 
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!
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Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop

• Add neighbors to queue: O( deg(v) log |E|)
• Iterator operations are O(1) [Why?]
• Adding an edge to the queue is O(log |E|)

• Find next edge: O(# edges checked * log |E|)
• Removing an edge from queue is O(log |E|) time
• All other operations are O(1) time
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Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:
• For each vertex, it’s O( deg(v) log |E|) time
• Adding over all vertices gives

• which is O(|E| log |E|) = O(|E| log |V|)
• |E| ≤|V|2 ,so log |E| ≤ log |V|2 = 2 log |V| = O(log |V|)

deg(v)log | E |
v∈V∑ = log | E | deg(v)

v∈V∑ = log | E | *2 | E |
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Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)
• Each edge is checked at most once
• Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s 
Algorithm is O(|E| log |V|)
• Typically written as O( m log n)

• Where m= |E| and n = |V|
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Single Source Shortest Paths
The Problem: Given a graph G and a starting 
vertex v, find, for each vertex u≠v reachable 
from v, a shortest path from v to u.

•The Single Source Shortest Paths Problem
•Arises in many contexts, including network 
communications
•Uses edge weights (but we’ll call them 
“lengths”): assume they are non-negative 
numbers
•Could be a directed or undirected graph
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Single Source Shortest Paths

• We’ll look at directed graphs
• So the paths must be directed paths

• Let’s think....

• Suppose we have a set shortest paths {Pu : 
u≠v}, where Pu is a shortest path from v to u

• Let H be the subgraph of G consisting of each 
vertex of G along with all of the edges in each 
Pu

• What can we say about H?
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Single Source Shortest Paths

Observations
• If some vertex u has in-degree greater than 1, 

we can drop one of the incoming edges: Why?
• Only the last edge of the shortest path from v-u is 

needed as an in-edge to u [Why?]
• So we assume H has in-deg(u)=1 for all u≠v

• We need no in-edges for v [Why?]

• H can’t have any directed cycles
• Well, v can’t be on any cycles (in-deg(v) = 0)
• If there were a cycle, some vertex on it would 

have in-degree > 1 [Why?]
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Single Source Shortest Paths
Observations
• In fact, even disregarding edge directions, 

there would be no cycles
• Some vertex would have in-degree at least 2

• Or else there’s a directed cycle (Why?)

• So, we can assume that there is some set of 
shortest paths that forms a (directed) tree

• This suggests that we try again to
Greedily grow a tree

• The question is: How?
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The Right Kind of Greed

• Build a MCST?
• No: It won’t always give shortest paths

• A start: take shortest edge from start vertex s
• That must be a shortest path!
• And now we have a small tree of shortest paths

• What next?
• Design an algorithm thinking inductively
• Suppose we have found a tree Tk that has shortest 

paths from s to the k-1 vertices “closest” to s
• What vertex would we want to add next?
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Finding the Best Vertex to Add to Tk

Not all edges are displayed

Question: Can we find the next closest vertex to s?
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What’s a Good Greedy Choice?

Idea: Pick edge e from 
u in Tk to v in G-Tk that 
minimizes the length 
of the tree path from s 
up to–and through–e

Now add v and e to Tk
to get tree Tk+1

Now Tk+1 is a tree consisting of shortest paths from s to the 
k vertices closest to s!  [Proof?] Repeat until k = |V|
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Some Notation Reminders

• l(e) : length (weight) of edge e
• d(u,v) : distance from u to v

• Length of shortest path from u to v

• The priority queue stores an estimate of the distance from 
s to w by storing, for some edge (v,w), d(s,v) + l(v,w)

• The estimate is always an upper bound on d(s,w)
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Dijkstra: What Do We Return?

• As we find a new vertex v to add to the tree 
of shortest paths, add edges e=(v,w) to a map.

• Precisely:
• Use the PQ association(X,Y) edgeInfo where

• X is d(s,v) + l(v,w)
• Y is the edge e=(v,w)

• Add the key/value pair (w, edgeInfo) to the map

• So the map entry with key w tells us the edge 
the best path used to get from the tree to w
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Dijkstra’s Algorithm
Dijkstra(G, s)  // l(e) is the length of edge e
let Tß({s}, ∅)  and PQ be an empty priority queue
for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all vertices of G and PQ is non-empty

repeat
e ß PQ.removeMin()   // skip edges with both

until  PQ is empty or e=(u,v) for u∈T, v ∉ T  // ends in T
if  e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)
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Dijkstra: Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Are there any hidden space costs?

• Result: O(|V| + |E|)
• Optimal in Big-O sense!
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Dijkstra : Time Complexity

Assume Map ops are O(1) time
Across all iterations of outer while loop

• Edges are added to and removed from the 
priority queue
• But any edge is added (and removed) at most 

once!
• Total PQ operation cost is O(|E| log |E|) time

• Which is O(|E| log |V|) time

• All other operations take constant time

• Thus time complexity is O(|E| log |V|)


