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Last Time

• Adjacency List Implementation Details
• Time/space complexity
• *see corrected table in slides posted online
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Today’s Outline

• System.out.println(GraphListDirected)?
• Fundamental Graph Properties
• Minimum-cost spanning subgraph
• Prim’s Algorithm
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Printing A GraphList

• What happens when we execute the following code:

Graph<String, Integer> g = 
new GraphListUndirected<String, Integer>();

g.add(“CSCI 136”);
g.add(“PSYC 101”); 
…
g.addEdge(“CSCI 136”, “MATH 200”, 1);
g.addEdge(“CSCI 136”, “HIST 101”, 1);
…
System.out.println(g);
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System.out.println(g);

09wkj-lab11/ -> java Schedule small.txt
<GraphListUndirected: <Hashtable: size=7 
capacity=997 key=HIST 301, 
value=<GraphListVertex: HIST 301> key=CSCI 
136, value=<GraphListVertex: CSCI 136> 
key=ENGL 201, value=<GraphListVertex: ENGL 
201> key=PHIL 101, value=<GraphListVertex: 
PHIL 101> key=MATH 251, 
value=<GraphListVertex: MATH 251> key=SOCI 
201, value=<GraphListVertex: SOCI 201> 
key=PSYC 212, value=<GraphListVertex: PSYC 
212>>> ????
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System.out.println(g);

• public final class System
extends Object
The System class contains several useful class fields and 
methods. It cannot be instantiated.
Among the facilities provided by the System class are 
standard input, standard output, and error output streams; 
access to externally defined properties and environment 
variables; a means of loading files and libraries; and a utility 
method for quickly copying a portion of an array.
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System.out.println(g);

Fields

Modifier and Type Field and Description

static PrintStream err The "standard" error output stream.

static InputStream in The "standard" input stream.

static PrintStream out The "standard" output stream.

The System class has 3 static fields useful for communicating
with the outside world (aka the terminal)
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System.out.println(g);

• public class PrintStream
extends FilterOutputStream
implements Appendable, Closeable

A PrintStream adds functionality to another output 
stream, namely the ability to print representations of various 
data values conveniently. Two other features are …
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System.out.println(g);

void println() Terminates the current line by writing the 
line separator string.

void println(boolean x) Prints a boolean and then 
terminate the line.

void println(char x) Prints a character and then 
terminate the line.

void println(char[] x) Prints an array of characters and 
then terminate the line.

void println(double x) Prints a double and then 
terminate the line.

void println(float x) Prints a float and then terminate the 
line.

void println(int x) Prints an integer and then terminate 
the line.

void println(long x) Prints a long and then terminate the 
line.

void println(String x) Prints a String and then 
terminate the line.

void println(Object x) Prints an Object and then 
terminate the line.

The PrintStream println() method is overloaded – the 
method executed depends on the argument type.

Primitive
Types

String

Object
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System.out.println(g);
g is a Graph, not a primitive or a String. println(g) will
call the version of println that takes an Object–everything
(including GraphListDirected) inherits from Object.

public void println(Object x)

Prints an Object and then terminate the line. This method 
calls at first String.valueOf(x) to get the printed object's 
string value, then behaves as though it 
invokes print(String) and then println().

Parameters: x - The Object to be printed.
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String.valueOf(obj)

public static String valueOf(Object obj)

Parameters: obj - an Object.

Returns: if the argument is null, then a string equal 
to "null"; otherwise, the value of obj.toString() is 
returned.

The PrintStream class’ println(Object x) method calls
String.valueOf(x) to convert x into a String for printing.
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A Chain of toString()s

GraphListDirected.java
public String toString() {

return "<GraphListDirected:” + 
dict.toString() + ">";

}

System.out.println(g); 
↳ String.valueof(g);

↳ g.toString();



13

A Chain of toString()s
Hashtable.java

public String toString()    {
StringBuffer s = new StringBuffer();
int i;
s.append("<Hashtable: size=" + size() +

" capacity=" + data.size());
Iterator<Association<K,V>> hi =

new HashtableIterator<K,V>(data);
while (hi.hasNext()) {

Association<K,V> a = hi.next();
s.append(" key=" + a.getKey()+

"value=" + a.getValue());
}
s.append(">");
return s.toString();

}
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A Chain of toString()s

GraphListVertex.java
public String toString() {

return "<GraphListVertex: "+label()+">";
}

The GraphListVertex class stores all of the adjacent edges
but its toString() only prints the label. How do we debug?
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Printing a GraphList…

• Why must write our own method?
• We can’t modify structure5.GraphListVertex

• Plus the class is private --- the Graph interface hides it

• We can’t modify structure5.Graph

• Where should our function go?
• What should its arguments be?
• What should its return type be?

Task: implement
public static void printGraph(Graph<String, Integer> graph);
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// Graph, AbstractIterator implement Iterable interface
// This lets us use the for-each loop syntax!
public static <V,E> void printGraph(Graph<V, E> graph) {

for (V vertex : graph) {
System.out.print(vertex + " ->");
AbstractIterator<V> neighbors =

(AbstractIterator<V>) graph.neighbors(vertex);
for (V neighbor : neighbors) {

System.out.print(" " + neighbor);
}
System.out.println();

}
}
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printGraph(g);

09wkj-lab11/ -> java Schedule small.txt

HIST 301 -> PSYC 212 ENGL 201 CSCI 136
CSCI 136 -> MATH 251 ENGL 201 PHIL 101 PSYC 212 HIST 

301 SOCI 201
ENGL 201 -> CSCI 136 MATH 251 PHIL 101 PSYC 212 HIST 

301
PHIL 101 -> CSCI 136 MATH 251 ENGL 201
MATH 251 -> CSCI 136 ENGL 201 PHIL 101 SOCI 201 PSYC 

212
SOCI 201 -> CSCI 136 MATH 251 PSYC 212
PSYC 212 -> ENGL 201 HIST 301 CSCI 136 SOCI 201 MATH 

251

Hooray!
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Graph Applications
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Minimum-Cost Spanning Trees

Input: Undirected, edge-weighted graph
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Minimum-Cost Spanning Trees

Input: Undirected, edge-weighted graph
Output: A subgraph that includes all vertices, is fully-connected,
and contains no cycles. The sum of all edge weights is minimal.
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Basic Graph Properties

• A subgraph of a graph G=(V, E) is a graph G’=(V’,E’) 
where
• V’⊆ V
• E’⊆ E, and

(the vertices and edges in G’ are subsets of the vertices and edges in G)

• If e ∈ E’ where e = {u,v}, then u, v ∈ V’
(every edge in G’ has both of its ends in G’)

• If E’ contains every edge of E that has both ends in V’, 
then G’ is called the subgraph of G induced by V’

• If V’ = V, then G’ is called a spanning subgraph of G
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Basic Graph Properties

• Recall: An undirected graph G=(V,E) is 
connected if for every pair u,v in V, there is a 
path from u to v (and so from v to u)

• The maximal sized connected subgraphs of G
are called its connected components
• Note: They are induced subgraphs of G

• An undirected graph without cycles is a forest

• A connected forest is called a tree.
• Not to be confused with the data structure!
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Tree

!Tree,
!Forest

Tree

Forest(s)

(All three “units” are 
connected Components)
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Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at 
least one vertex v of degree 1 (a leaf)

• Let’s prove this: Consider a longest simple path in G…

Thm: If G=(V,E) is a tree then |E| = |V| - 1.
• Hint: Induction on v: delete a leaf

Thm: Every connected graph G=(V,E) contains a 
spanning subgraph G’=(V,E’) that is a tree

• That is, a spanning tree

Proof idea:
• If G is not a tree, then it contains a cycle C
• Removing an edge from C leaves G connected (why)
• Repeat until no more cycles remain
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Edge-Weighted Graphs

• An edge-weighting of a graph G=(V,E) is an 
assignment of a number (weight) to each edge 
of G
• We write the weight of e as w(e) or we

• The weight w(G’) of any subgraph G’ of G is 
the sum of the weights of the edges in G’

• We will focus on edge-weights that are non-
negative, so if G’ is a subgraph of G, then 
w(G’) ≤ w(G)
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A Famous Problem: MCST

Given a connected, undirected graph G=(V,E) 
with non-negative edge weights, find a minimum-
weight, connected, spanning subgraph of G.

Note: Such a subgraph must be a spanning tree!
• If it weren’t, we could remove an edge and reduce w(G’)

Frequently, we refer to the edge weights as costs
and so this problem becomes:

Given an undirected graph G with edge costs, 
compute a minimum-cost spanning tree of G.
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Minimum-Cost Spanning Trees
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Minimum-Cost Spanning Trees

MCST: 
• fully connected (path from every vertex to ever other vertex)
• spanning subgraph (V’ = V), 
• tree (no cycles), 
• the sum of the edge costs is minimal.
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Finding a MCST

Suppose we just wanted to find a PCST (pretty 
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident 

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree 

that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm

• How close might this get us to the MCST?
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An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing 
algorithm always finds a minimum-cost spanning 
tree for any connected graph.

Contrast this with the greedy exam scheduling 
algorithm, which does not always find a minimum 
coloring



31

Prim’s Algorithm
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; 
set V1ß{v} and V2ßV1 - {v}
let A be the set of all edges between V1 and V2

while(|V1|<|V|)
let e ßcheapest edge in A between V1 and V2

add e to MCST
let ußthe vertex of e in V2

move u from V2 to V1;
add to A all edges incident to u
// note: A now may have edges with both ends in V1

// there are still vertices not in V1

// V1 is v and V2 is everything else
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Prim’s Algorithm (Variant)
• Note: If G is not connected, A will eventually be 

empty even though |V1| < |V|
• We fix this by

• Replacing while(|V1| < |V|) with while(|V1| < |V|) && A≠∅)
• Replacing until e is an edge between V1 and V2 with

• until A≠∅ or e is an edge between V1 and V2

• Then Prim will find the MCST for the component 
containing v
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Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; 
set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let v ß the vertex of e in V2

move v from V2 to V1;
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Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges 
as “visited” in G

• We’ll “build” V1 by marking its vertices visited
• How should we represent A?
• What operations are important to A?

• Add edges
• Remove cheapest edge

• A priority queue!

• When we remove an edge from A, check to 
ensure it has one end in each of V1 and V2
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ComparableEdge Class

• Values in a PriorityQueue need to implement 
Comparable

• We wrap edges of the PQ in a class called 
ComparableEdge
• It requires the label used by graph edges to be of 

a Comparable type
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Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;



37

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null;        // current vertex                                  
Edge<String,Integer> e; // current edge                                    
boolean searching;      // still building tree
g.reset();              // clear visited flags                             

// select a node from the graph, if any                                    
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();
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MCST: The Code

do {
// visit the vertex and add all outgoing edges                         
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {

// turn it into outgoing edge                                      
e = g.getEdge(v,ai.next());
// add the edge to the queue                                       
q.add(new
ComparableEdge<String,Integer>(e));

}
...
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MCST: The Code
searching = true;
while (searching && !q.isEmpty()) {

// grab next shortest edge 
e = q.remove();
// Is e between V1 and V2 (subtle code!!)
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);
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Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor 
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!
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Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop
• Add neighbors to queue: O( deg(v) log |E|)
• Iterator operations are O(1) [Why?]
• Adding an edge to the queue is O(log |E|)

• Find next edge: O(# edges checked * log |E|)
• Removing an edge from queue is O(log |E|) time
• All other operations are O(1) time
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Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:
• For each vertex, it’s O( deg(v) log |E|) time

• Adding over all vertices gives

• which is O(|E| log |E|) = O(|E| log |V|)
• |E| ≤|V|2 ,so log |E| ≤ log |V|2 = 2 log |V| = O(log |V|)

deg(v)log | E |
v∈V∑ = log | E | deg(v)

v∈V∑ = log | E | *2 | E |



43

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)
• Each edge is checked at most once

• Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s 
Algorithm is O(|E| log |V|)
• Typically written as O( m log n)

• Where m= |E| and n = |V|


