CSCI 136
 Data Structures \&
 Advanced Programming

Lecture 32
Fall 2017
Instructors: Bills

Last Time

- Adjacency List Implementation Details
- Time/space complexity
- *see corrected table in slides posted online

Today's Outline

- System.out.println(GraphListDirected)?
- Fundamental Graph Properties
- Minimum-cost spanning subgraph
- Prim's Algorithm

Printing A GraphList

- What happens when we execute the following code:

Graph<String, Integer> g = new GraphListUndirected<String, Integer>();
g.add("CSCI 136");
g.add("PSYC 101");
g.addEdge("CSCI 136", "MATH 200", 1);
g.addEdge("CSCI 136", "HIST 101", 1);
...
System.out.println(g);

System.out.println(g);

09wkj-lab11/ -> java Schedule small.txt <GraphListUndirected: <Hashtable: size=7 capacity=997 key=HIST 301, value=<GraphListVertex: HIST 301> key=CSCI 136, value=<GraphListVertex: CSCI 136> key=ENGL 201, value=<GraphListVertex: ENGL 201> key=PHIL 101, value=<GraphListVertex: PHIL 101> key=MATH 251,
value=<GraphListVertex: MATH 251> key=SOCI 201, value=<GraphListVertex: SOCI 201> key=PSYC 212, value=<GraphListVertex: PSYC 212>>>
????

System.out.println(g);

- public final class System extends Object
The System class contains several useful class fields and methods. It cannot be instantiated.

Among the facilities provided by the System class are standard input, standard output, and error output streams; access to externally defined properties and environment variables; a means of loading files and libraries; and a utility method for quickly copying a portion of an array.

SMSE Q OU. OUt. Drintin (\%),

The system class has 3 static fields useful for communicating with the outside world (aka the terminal)

Fields	
Modifier and Type	Field and Description
static PrintStream	err The "standard" error output stream.
static InputStream	$\underline{\text { in The "standard" input stream. }}$
static PrintStream	out The "standard" output stream.

System.out.println(g);

- public class PrintStream extends FilterOutputStream implements Appendable, Closeable

A PrintStream adds functionality to another output stream, namely the ability to print representations of various data values conveniently. Two other features are ...

System.out.println(g);

The PrintStream println() method is overloaded - the method executed depends on the argument type.

void	printlln() Terminates the current line by writing the line separator string.	
void	printlln(boolean x) Prints a boolean and then terminate the line.	
void	printlln(char x) Prints a character and then terminate the line.	
void	println(char[] x) Prints an array of characters and then terminate the line.	
void	printlln(double x) Prints a double and then terminate the line.	
void	println(float \mathbf{x}) Prints a float and then terminate the line.	
void	println(int x) Prints an integer and then terminate the line.	
void	printlln(long x) Prints a long and then terminate the line.	-
void	println(String x) Prints a String and then terminate the line.	
void	printlln(Object x) Prints an Object and then terminate the line.	

System.out.println(g);

g is a Graph, not a primitive or a String. println(g) will call the version of println that takes an Object-everything (including GraphListDirected) inherits from Object.

public void println(Object x)

Prints an Object and then terminate the line. This method calls at first String.valueOf (x) to get the printed object's string value, then behaves as though it invokes print(String) and then println().

Parameters: x - The Object to be printed.

String.valueOf(obj)

The PrintStream class' println(Object x) method calls String.valueOf(x) to convert x into a String for printing.

public static string valueOf(Object obj)

Parameters: obj - an Object.
Returns: if the argument is null, then a string equal to "null"; otherwise, the value of obj.toString() is returned.

A Chain of toString()s

System.out.println(g);
\rightarrow String.valueof(g);
b g.toString();

GraphListDirected.java

public String toString() \{ return "<GraphListDirected:" + dict.toString() + ">";
\}

A Chain of toString()s

Hashtable.java

```
public String toString()
        {
    StringBuffer s = new StringBuffer();
    int i;
    s.append("<Hashtable: size=" + size() +
        " capacity=" + data.size());
    Iterator<Association<K,V>> hi =
                new HashtableIterator<K,V>(data);
    while (hi.hasNext()) {
        Association<K,V> a = hi.next();
        s.append(" key=" + a.getKey()+
        "value=" + a.getValue());
    }
    s.append(">");
    return s.toString();
}
```


A Chain of toString()s

> GraphListVertex.java public String toString() \{ return "<GraphListVertex: "+label()+">"; \}

The GraphListVertex class stores all of the adjacent edges but its toString() only prints the label. How do we debug?

Printing a GraphList...

- Why must write our own method?
- We can't modify structure5.GraphListVertex
- Plus the class is private --- the Graph interface hides it
- We can't modify structure5.Graph
- Where should our function go?
- What should its arguments be?
- What should its return type be?

Task: implement
public static void printGraph(Graph<String, Integer> graph);

```
// Graph, AbstractIterator implement Iterable interface
// This lets us use the for-each loop syntax!
public static <V,E> void printGraph(Graph<V, E> graph) {
    for (V vertex : graph) {
    System.out.print(vertex + " ->");
    AbstractIterator<V> neighbors =
        (AbstractIterator<V>) graph.neighbors(vertex);
    for (V neighbor : neighbors) {
        System.out.print(" " + neighbor);
    }
    System.out.println();
    }
}
```


printGraph(g);

09wkj-lab11/ -> java Schedule small.txt
HIST 301 -> PSYC 212 ENGL 201 CSCI 136
CSCI 136 -> MATH 251 ENGL 201 PHIL 101 PSYC 212 HIST 301 SOCI 201

ENGL 201 -> CSCI 136 MATH 251 PHIL 101 PSYC 212 HIST 301

PHIL 101 -> CSCI 136 MATH 251 ENGL 201
MATH 251 -> CSCI 136 ENGL 201 PHIL 101 SOCI 201 PSYC 212

SOCI 201 -> CSCI 136 MATH 251 PSYC 212
PSYC 212 -> ENGL 201 HIST 301 CSCI 136 SOCI 201 MATH 251

Hooray!

Graph Applications

Minimum-Cost Spanning Trees

Input: Undirected, edge-weighted graph

Minimum-Cost Spanning Trees

Input: Undirected, edge-weighted graph
Output: A subgraph that includes all vertices, is fully-connected, and contains no cycles. The sum of all edge weights is minimal. 20

Basic Graph Properties

- A subgraph of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where
- $\mathrm{V}^{\prime} \subseteq \mathrm{V}$
- $\mathrm{E}^{\prime} \subseteq \mathrm{E}$, and
(the vertices and edges in G^{\prime} are subsets of the vertices and edges in G)
- If $e \in E^{\prime}$ where $e=\{u, v\}$, then $u, v \in V^{\prime}$
(every edge in G^{\prime} has both of its ends in G^{\prime})
- If E' contains every edge of E that has both ends in V^{\prime}, then G^{\prime} is called the subgraph of G induced by V^{\prime}
- If $\mathrm{V}^{\prime}=\mathrm{V}$, then G^{\prime} is called a spanning subgraph of G

Basic Graph Properties

- Recall: An undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is connected if for every pair u, v in V , there is a path from u to v (and so from v to u)
- The maximal sized connected subgraphs of G are called its connected components
- Note: They are induced subgraphs of G
- An undirected graph without cycles is a forest
- A connected forest is called a tree.
- Not to be confused with the data structure!

(All three "units" are connected Components)

Facts About Graphs

Thm: If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a forest with $|\mathrm{E}|>0$, then G has at least one vertex v of degree I (a leaf)

- Let's prove this: Consider a longest simple path in G... Thm: If $G=(V, E)$ is a tree then $|E|=|V|-I$.
- Hint: Induction on v: delete a leaf

Thm: Every connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ contains a spanning subgraph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ that is a tree

- That is, a spanning tree

Proof idea:

- If G is not a tree, then it contains a cycle C
- Removing an edge from C leaves G connected (why)
- Repeat until no more cycles remain

Edge-Weighted Graphs

- An edge-weighting of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an assignment of a number (weight) to each edge of G
- We write the weight of e as $w(e)$ or w_{e}
- The weight $w\left(\mathrm{G}^{\prime}\right)$ of any subgraph G^{\prime} of G is the sum of the weights of the edges in G^{\prime}
- We will focus on edge-weights that are nonnegative, so if G^{\prime} is a subgraph of G , then
$w\left(G^{\prime}\right) \leq w(G)$

A Famous Problem: MCST

Given a connected, undirected graph $G=(V, E)$
with non-negative edge weights, find a minimumweight, connected, spanning subgraph of G.
Note: Such a subgraph must be a spanning tree!

- If it weren't, we could remove an edge and reduce w(G^{\prime})

Frequently, we refer to the edge weights as costs and so this problem becomes:

Given an undirected graph G with edge costs, compute a minimum-cost spanning tree of G .

Minimum-Cost Spanning Trees

Minimum-Cost Spanning Trees

MCST:

- fully connected (path from every vertex to ever other vertex)
- spanning subgraph ($\mathrm{V}^{\prime}=\mathrm{V}$),
- tree (no cycles),
- the sum of the edge costs is minimal.

Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here's one idea:

Grow It Greedily!

- Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
- Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
- This method is called Prim's Algorithm
- How close might this get us to the MCST?

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does not always find a minimum coloring

Prim's Algorithm

$\operatorname{prim}(G) / /$ finds a MCST of connected $G=(V, E)$
let v be a vertex of G;
set $V_{1} \leftarrow\{v\}$ and $V_{2} \leftarrow V_{1}-\{v\} \| \mathrm{V}_{1}$ is v and V_{2} is everything else let A be the set of all edges between V_{1} and V_{2}
while $\left(\left|V_{1}\right|<|V|\right) \quad / /$ there are still vertices not in V_{1}
let e \leftarrow cheapest edge in A between V_{1} and V_{2}
add e to MCST
let $u \leftarrow$ the vertex of e in V_{2}
move u from V_{2} to V_{1};
add to A all edges incident to u
// note: A now may have edges with both ends in V_{I}

Prim's Algorithm (Variant)

- Note: If G is not connected, A will eventually be empty even though $\left|\mathrm{V}_{\mathrm{l}}\right|<|\mathrm{V}|$
- We fix this by
- Replacing while $\left(\left|\mathrm{V}_{\mathrm{l}}\right|<|\mathrm{V}|\right)$ with while $\left.\left(\left|\mathrm{V}_{\mathrm{l}}\right|<|\mathrm{V}|\right) \& \& \mathrm{~A} \neq \varnothing\right)$
- Replacing until e is an edge between V_{1} and V_{2} with
- until $A \neq \varnothing$ or e is an edge between V_{1} and V_{2}
- Then Prim will find the MCST for the component containing v

Prim's Algorithm (Variant)

$\operatorname{prim}(G) / /$ finds a MCST of connected $G=(V, E)$
let v be a vertex of G;
set $V_{1} \leftarrow\{v\}$ and $V_{2} \leftarrow V_{1}-\{v\}$
let $A \leftarrow \varnothing \quad / / A$ will contain ALL edges between V_{1} and V_{2} while $\left|V_{1}\right|<|V| \& \&|A|>0$
add to A all edges incident to v
repeat
remove cheapest edge e from A
until A is empty $\left|\mid\right.$ is an edge between V_{1} and V_{2}
ife is an edge between V_{1} and V_{2}
let $v \leftarrow$ the vertex of e in V_{2}
move vfrom V_{2} to V_{1};

Implementing Prim's Algorithm

- We'll "build" the MCST by marking its edges as "visited" in G
- We'll "build" V_{1} by marking its vertices visited
- How should we represent A ?
- What operations are important to A?
- Add edges
- Remove cheapest edge
- A priority queue!
- When we remove an edge from A, check to ensure it has one end in each of V_{1} and V_{2}

ComparableEdge Class

- Values in a PriorityQueue need to implement Comparable
- We wrap edges of the PQ in a class called ComparableEdge
- It requires the label used by graph edges to be of a Comparable type

Prim's Algorithm (Variant)

$\operatorname{prim}(G) / /$ finds a MCST of connected $G=(V, E)$
let v be a vertex of G; set $V_{1} \leftarrow\{v\}$ and $V_{2} \leftarrow V_{1}-\{v\}$
$\operatorname{let} A \leftarrow \varnothing \quad / / A$ will contain ALL edges between V_{1} and V_{2} while $\left|V_{l}\right|<|V| \& \&|A|>0$
add to A all edges incident to v repeat
remove cheapest edge e from A until A is empty $\|$ e is an edge between V_{1} and V_{2} ife is an edge between V_{1} and V_{2}

$$
\text { let } v \leftarrow \text { the vertex of e in } V_{2}
$$

move vfrom V_{2} to V_{1};

MCST: The Code

> PriorityQueue<ComparableEdge<String,Integer>> q = new SkewHeap<ComparableEdge<String,Integer>>();

```
String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree
g.reset(); // clear visited flags
```

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();

MCST: The Code

do \{
// visit the vertex and add all outgoing edges g.visit(v);

Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) \{
// turn it into outgoing edge
e = g.getEdge(v,ai.next());
// add the edge to the queue
q. add (new

ComparableEdge<String,Integer>(e));
\}

MCST: The Code

```
searching = true;
while (searching && !q.isEmpty()) {
    // grab next shortest edge
    e = q.remove();
    // Is e between }\mp@subsup{\textrm{V}}{1}{}\mathrm{ and }\mp@subsup{\textrm{V}}{2}{}\mathrm{ (subtle code!!)
    v = e.there();
    if (g.isVisited(v)) v = e.here();
    if (!g.isVisited(v)) {
            searching = false;
            g.visitEdge(g.getEdge(e.here(),
                        e.there()));
    }
}
} while (!searching);
```


Prim : Space Complexity

- Graph: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Each vertex and edge uses a constant amount of space
- Priority Queue $O(|E|)$
- Each edge takes up constant amount of space
- Every other object (including the neighbor iterator) uses a constant amount of space
- Result: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Optimal in Big-O sense!

Prim : Time Complexity

Assume Map ops are $\mathrm{O}(\mathrm{I})$ time (not quite true!)
For each iteration of do ... while loop

- Add neighbors to queue: $\mathrm{O}(\operatorname{deg}(\mathrm{v}) \log |\mathrm{E}|)$
- Iterator operations are O(I) [Why?]
- Adding an edge to the queue is $\mathrm{O}(\log |\mathrm{E}|)$
- Find next edge: $\mathrm{O}(\#$ edges checked $* \log |\mathrm{E}|)$
- Removing an edge from queue is $\mathrm{O}(\log |\mathrm{E}|)$ time
- All other operations are $\mathrm{O}(\mathrm{I})$ time

Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:

- For each vertex, it's $O(\operatorname{deg}(v) \log |E|)$ time
- Adding over all vertices gives

$$
\sum_{v \in V} \operatorname{deg}(v) \log |E|=\log |E| \sum_{v \in V} \operatorname{deg}(v)=\log |E| * 2|E|
$$

- which is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$
- $|\mathrm{E}| \leq|\mathrm{V}|^{2}$, so $\log |E| \leq \log |\mathrm{V}|^{2}=2 \log |\mathrm{~V}|=\mathrm{O}(\log |\mathrm{V}|)$

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: $\mathrm{O}(\#$ edges checked $* \log |\mathrm{E}|)$

- Each edge is checked at most once
- Adding over all edges gives $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$ again

Thus, overall time complexity (worst case) of Prim's Algorithm is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

- Typically written as $\mathrm{O}(\mathrm{m} \log \mathrm{n})$
- Where $\mathrm{m}=|\mathrm{E}|$ and $\mathrm{n}=|\mathrm{V}|$

