
CSCI 136
Data Structures &

Advanced Programming

Lecture 31
Fall 2017

Instructors: Bills

2

Last Time

• Greedy Algorithms for Optimization
• Lab 11 : Exam Scheduling
• Adjacency List Implementation Details

3

Today’s Outline

• GraphList Time/Space Complexity
• An Important Algorithm: Minimum-cost

spanning subgraph
• More Core Algorithms: Directed Graphs
• Dijkstra’s Algorithm
• Time permitting

• Cycle Detection
• Topological Sorting

4

Efficiency Revisited

• Assume Map operations are O(1) (for now)
• |E| = number of edges
• |V| = number of vertices

• Runtime of add, addEdge, getEdge, removeEdge,
remove?

• Space usage?
• Conclusions

• Matrix is better for dense graphs
• List is better for sparse graphs
• For graphs “in the middle” there is no clear winner

5

Efficiency : Assuming Fast Map
Matrix GraphList

add O(1) O(1)

addEdge O(1) O(1)

getEdge O(1) O(|V|)

removeEdge O(1) O(|V|)

remove O(|V|) O(|E|)

space O(|V|2) O(|V|+|E|)

6

Applications

7

Minimum-Cost Spanning Trees

8

Minimum-Cost Spanning Trees

9

Basic Graph Properties

• A subgraph of a graph G=(V, E) is a graph G’=(V’,E’)
where
• V’⊆ V
• E’⊆ E, and
• If e ∈ E’ where e = {u,v}, then u, v ∈ V’

• If E’ contains every edge of E having both ends in V’,
then G’ is called the subgraph of G induced by V’

• If V’ = V, then G’ is called a spanning subgraph of G

10

Basic Graph Properties

• Recall: An undirected graph G=(V,E) is
connected if for every pair u,v in V, there is a
path from u to v (and so from v to u)

• The maximal sized connected subgraphs of G
are called its connected components
• Note: They are induced subgraphs of G

• An undirected graph without cycles is a forest

• A connected forest is called a tree.
• Not to be confused with the data structure!

11

Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at
least one vertex v of degree 1 (a leaf)

• Let’s prove this: Consider a longest simple path in G…

Thm: If G=(V,E) is a tree then |E| = |V| - 1.
• Hint: Induction on v: delete a leaf

Thm: Every connected graph G=(V,E) contains a
spanning subgraph G’=(V,E’) that is a tree

• That is, a spanning tree

Proof idea:
• If G is not a tree, then it contains a cycle C
• Removing an edge from C leaves G connected (why)
• Repeat until no more cycles remain

12

Edge-Weighted Graphs

• An edge-weighting of a graph G=(V,E) is an
assignment of a number (weight) to each edge
of G
• We write the weight of e as w(e) or we

• The weight w(G’) of any subgraph G’ of G is
the sum of the weights of the edges in G’

• We will focus on edge-weights that are non-
negative, so if G’ is a subgraph of G, then
w(G’)≤w(G)

13

A Famous Problem

Given a connected, undirected graph G=(V,E)
with non-negative edge weights, find a minimum-
weight, connected, spanning subgraph of G.

Note: Such a subgraph must be a spanning tree!
Frequently, we refer to the edge weights as costs
and so this problem becomes:

Given an undirected graph G with edge costs,
compute a minimum-cost spanning tree of G.

14

Minimum-Cost Spanning Trees

15

Minimum-Cost Spanning Trees

16

Finding a MCST

Suppose we just wanted to find a PCST (pretty
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree

that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm

• How close might this get us to the MCST?

17

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing
algorithm always finds a minimum-cost spanning
tree for any connected graph.

Contrast this with the greedy exam scheduling
algorithm, which does not always find a minimum
schedule (coloring)

Why does this work?

18

The Key

Def: Sets V1 and V2 form a partition of a set V if

V1∪V2 = V and V1∩V2 = ∅

Lemma: Let G=(V,E) be a connected graph and
let V1 and V2 be a partition of V. Every MCST of
G contains a cheapest edge between V1 and V2

• Let e be a cheapest edge between V1 and V2

• Let T be a MCST of G. If e ∉ T, then T∪ {e}
contains a cycle C and e is an edge of C

• Some other edge e’ of C must also be between V1

and V2; e is a cheapest edge, so w(e’) = w(e) [Why?]

19

Using The Key to Prove Prim

We’ll assume all edge costs are distinct
Otherwise proof is slightly less elegant

Let T be a tree produced by the greedy
algorithm and suppose T* is a MCST for G
Claim: T = T*

Idea of Proof: Show that every edge added to
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why? Use the key!

20

Using The Key

Now use induction!
• Suppose, for some k ≥ 1, that the first k edges

added to T are in T*. These form a tree Tk

• Let V1 be the vertices of Tk and let V2 = V-V1

• Now, the greedy algorithm will add to T the
cheapest edge e between V1 and V2

• But any MCST contains the (only!) cheapest
edge between V1 and V2, so e is in T*

• Thus the first k+1 edges of T are in T*

