CSCI 136 Data Structures & Advanced Programming

> Lecture 31 Fall 2017 Instructors: Bills

Last Time

- Greedy Algorithms for Optimization
- Lab II : Exam Scheduling
- Adjacency List Implementation Details

Today's Outline

- GraphList Time/Space Complexity
- An Important Algorithm: Minimum-cost spanning subgraph
- More Core Algorithms: Directed Graphs
 - Dijkstra's Algorithm
 - Time permitting
 - Cycle Detection
 - Topological Sorting

Efficiency Revisited

- Assume Map operations are O(I) (for now)
 - |E| = number of edges
 - |V| = number of vertices
- Runtime of add, addEdge, getEdge, removeEdge, remove?
- Space usage?
- Conclusions
 - Matrix is better for dense graphs
 - List is better for sparse graphs
 - For graphs "in the middle" there is no clear winner

Efficiency : Assuming Fast Map

	Matrix	GraphList
add	O(I)	O(I)
addEdge	O(I)	O(I)
getEdge	O(I)	O(V)
removeEdge	O(I)	O(V)
remove	O(V)	O(E)
space	O(V ²)	O(V + E)

Applications

Basic Graph Properties

- A subgraph of a graph G=(V, E) is a graph G'=(V',E') where
 - V' \subseteq V
 - E' \subseteq E, and
 - If $e \in E'$ where $e = \{u,v\}$, then $u, v \in V'$
- If E' contains every edge of E having both ends in V', then G' is called the subgraph of G *induced by* V'
- If V' = V, then G' is called a spanning subgraph of G

Basic Graph Properties

- Recall: An undirected graph G=(V,E) is connected if for every pair u,v in V, there is a path from u to v (and so from v to u)
- The maximal sized connected subgraphs of G are called its connected components
 - Note: They are induced subgraphs of G
- An undirected graph without cycles is a forest
- A connected forest is called a tree.
 - Not to be confused with the data structure!

Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at least one vertex v of degree 1 (a *leaf*)

• Let's prove this: Consider a longest simple path in G...

Thm: If G=(V,E) is a tree then |E| = |V| - I.

• Hint: Induction on v: delete a leaf

Thm: Every connected graph G=(V,E) contains a spanning subgraph G'=(V,E') that is a tree

• That is, a spanning tree

Proof idea:

- If G is not a tree, then it contains a cycle C
- Removing an edge from C leaves G connected (why)
- Repeat until no more cycles remain

Edge-Weighted Graphs

- An edge-weighting of a graph G=(V,E) is an assignment of a number (weight) to each edge of G
 - We write the weight of e as w(e) or w_e
- The weight w(G') of any subgraph G' of G is the sum of the weights of the edges in G'
- We will focus on edge-weights that are nonnegative, so if G' is a subgraph of G, then w(G')≤w(G)

A Famous Problem

Given a connected, undirected graph G=(V,E) with non-negative edge weights, find a minimumweight, connected, spanning subgraph of G. Note: Such a subgraph must be a spanning tree! Frequently, we refer to the edge weights as *costs* and so this problem becomes:

Given an undirected graph G with edge costs, compute a minimum-cost spanning tree of G.

Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here's one idea: Grow It Greedily!

- Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
- Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
- This method is called Prim's Algorithm
- How close might this get us to the MCST?

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does *not* always find a minimum schedule (coloring)

Why does this work?

The Key

Def: Sets V_1 and V_2 form a *partition* of a set V if

$$V_1 \cup V_2 = V \text{ and } V_1 \cap V_2 = \emptyset$$

Lemma: Let G=(V,E) be a connected graph and let V_1 and V_2 be a partition of V. Every MCST of G contains a cheapest edge between V_1 and V_2

- Let e be a cheapest edge between V_1 and V_2
- Let T be a MCST of G. If $e \notin T$, then $T \cup \{e\}$ contains a cycle C and e is an edge of C
- Some other edge e' of C must also be between V₁ and V₂; e is a cheapest edge, so w(e') = w(e) [Why?]

Using The Key to Prove Prim

We'll assume all edge costs are distinct Otherwise proof is slightly less elegant Let T be a tree produced by the greedy algorithm and suppose T* is a MCST for G Claim: T = T*

Idea of Proof: Show that every edge added to the tree T by the greedy algorithm is in T* Clearly the first edge added to T is in T* Why? Use the key!

Using The Key

Now use induction!

- Suppose, for some $k \ge 1$, that the first k edges added to T are in T*. These form a tree T_k
- Let V_1 be the vertices of T_k and let $V_2 = V V_1$
- Now, the greedy algorithm will add to T the cheapest edge e between V_1 and V_2
- But any MCST contains the (only!) cheapest edge between V_1 and V_2 , so e is in T*
- Thus the first k+1 edges of T are in T*