
CSCI 136
Data Structures &

Advanced Programming

Lecture 3
Fall 2017

Instructors: Bill & Bill

Administrative Details

• Lab today in TCL 216 (217a is available, too)
• Lab is due by 11pm Sunday

• Copy your folder to Dropoff folder for your lab (see handout)

• Lab 1 design doc is “due” at beginning of lab
• Written design docs will be required at all labs
• You’ll discuss with another student at start of lab
• Several implementation options

• Some may be better than others....

2

CoinStrip Design

• How to store game state?
• Space needs
• Time to find coin

• Useful methods?
• void makeMove(whichCoin, howFar)
• boolean legalMove(whichCoin, howFar)
• toString()?

• What, if anything, did lab description omit?
• Form of “game board” to show players

3

Last Time
• Arrays, Operators, Expressions
• Some Simple Examples (Sum0-5)

• Entering, editing, compiling, running programs

4

Today’s Outline
• Control structures
• Branching: if – else, switch, break, continue
• Looping: while, do – while, for, for – each

• Object oriented programming Basics (OOP)
• Strings and String methods

• More on Class Types

• Interface specification for behavior abstraction
• Inheritance (class extension) for code reuse
• Abstract Classes

5

Control Structures

Select next statement to execute based on value
of a boolean expression. Two flavors:
• Looping structures: while, do/while, for
• Repeatedly execute same statement (block)

• Branching structures: if, if/else, switch
• Select one of several possible statements (blocks)
• Special: break/continue: exit a looping structure

• break: exits loop completely
• continue: proceeds to next iteration of loop

6

while & do-while
Consider this code to flip coin until heads up...

Random rng = new Random();
int flip = rng.nextInt(2), count = 0;
while (flip == 0) { // count flips until “heads”

count++;
flip = rng.nextInt(2);

}

...and compare it to this
int flip, count = 0;
do { // count flips until “heads”

count++;
flip = rng.nextInt(2);

} while (flip == 0) ;
7

For & for-each
Here’s a typical for loop example

int[] grades = { 100, 78, 92, 87, 89, 90 };
int sum = 0;
for(int i = 0; i < grades.length; i++)

sum += grades[i];

This for construct is equivalent to
int i = 0;
while (i < grades.length) {

sum += grades[i];
i++;

}

Can also write
for (int g : grades) // called for-each construct

sum += g;
8

Loop Construct Notes
• The body of a while loop may not ever be executed
• The body of a do – while loop always executes at

least once
• For loops are typically used when number of

iterations desired is known in advance. E.g.
• Execute loop exactly 100 times
• Execute loop for each element of an array

• The for-each construct is often used to access
array (and other collection type) values when no
updating of the array is required
• We’ll explore this construct more later in the course

9

If/else

if (x > 0) // Exactly 1 "if" clause
y = 1 / x;

else if (x < 0) { // 0 or more "else if" clauses
x = - x;
y = 1 / x;

}
else // at most 1 "else" clause

System.out.println(“Can’t divide by 0!”);

The single statement can be replaced by a block: any
sequence of statements enclosed in {}

10

switch
Example: Encode clubs, diamonds, hearts, spades as 0, 1, 2, 3
int x = myCard.getSuit(); // a fictional method
switch (x) {

case 1: case 2:
System.out.println("Your card is red");
break;

case 0: case 3:
System.out.println("Your card is black");
break;

default:
System.out.println("Illegal suit code!");
break;

}
11

Break & Continue
Suppose we have a method isPrime to test primality
Find first prime > 100

for(int i = 101; ; i++) // What’s with ; ; ?
if (isPrime(i)) {

System.out.println(i);
break;

}

Print primes < 100
for(int i = 1; i < 100; i++) {

if (!isPrime(i))
continue;

System.out.println(i);
}

12

Summary

Basic Java elements so far
• Primitive and array types
• Variable declaration and assignment
• Operators & operator precedence
• Expressions
• Control structures
• Branching: if – else, switch, break, continue
• Looping: while, do – while, for, for – each

• Edit (emacs), compile (javac), run (java) cycle
13

14

Object-Oriented Programming

• Objects are building blocks of Java software

• Programs are collections of objects
• Cooperate to complete tasks

• Represent “state” of the program
• Communicate by sending messages to each other

• Through method invocation

15

Object-Oriented Programming
• Objects can model:
• Physical items - Dice, board, dictionary
• Concepts - Date, time, words, relationships
• Processing - Sort, search, simulate

• Objects contain:
• State (instance variables)

• Attributes, relationships to other objects, components
– Letter value, grid of letters, number of words

• Functionality (methods)
• Accessor and mutator methods

– addWord, lookupWord, removeWord

16

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object
• Data components: instance variable (field)

declarations
• Functionality: method declarations
• Constructor(s): special method(s) describing the

steps needed to create an object (instance) of this
class type

17

A Simple Class
Premise: Define a type that stores information
about a student: name, age, and a single grade.
Declare a Java class called Student with data
components (fields/instance variables)

String name;
int age;
char grade;

And methods for accessing/modifying fields
• Getters: getName, getAge, getGrade
• Setters: setAge, setGrade

Declare a constructor, also called Student

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int theAge, String theName,

char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects
// ...see next slide...

18

public int getAge() {return age;}

public String getName() {return name;}

public char getGrade() {return grade;}

public void setAge(int theAge) {
age = theAge;

}

public void setGrade(char theGrade) {
grade = theGrade;

}
} // end of class declaration

19

Testing the Student Class
public class TestStudent {

public static void main(String[] args) {
Student a = new Student(18, ”Bill J", 'A');
Student b = new Student(21, ”Bill L", 'A+');
// Nice printing
System.out.println(a.getName() + ", " +

a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +

b.getAge() + ", " + b.getGrade());
// Tacky printing
System.out.println(a);
System.out.println(b);

}
}

20

Worth Noting

• We can create as many student objects as we
need, including arrays of Students

Student[] class = new Student[3];
class[0] = new Student(18, ”Huey", 'A');
class[1] = new Student(20, ”Dewey", 'B');
class[2] = new Student(20, ”Louie", 'A');

• Fields are private: only accessible in Student class
• Methods are public: accessible to other classes
• Some methods return values, others do not

• public String getName();
• public void setAge(int theAge); 21

A Programming Principle

Use constructors to initialize the state of an object,
nothing more.

• State: instance variables
• Frequently they are short, simple methods
• More complex constructors will typically use

helper methods.
• You constructors can call other constructors to

reuse code

22

Access Modifiers

• public and private are called access modifiers
• They control access of other classes to instance variables and

methods of a given class
• public : Accessible to all other classes
• private : Accessible only to the class declaring it

• There are two other levels of access that we’ll
see later

• Data-Hiding (encapsulation) Principle
• Make instance variables private
• Use public methods to access/modify object data

23

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
// What would age, name, grade
// refer to here...?

}

24

More Gotchas

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
this.age = age;
this.name = name;
this.grade = grade;

}
25

Use ‘this’

String in Java Is a Class Type
• Java provides language support for Strings
• String literals: “Bob was here!”, “-11.3”, “A”, “”

• If a class provides a method with signature
public String toString()

Java will automatically use that method to produce a
String representation of an object of that class type.

• For example
System.out.println(aStudent);

would use the toString method of Student to
produce a String to pass to the println method

Pro Tip: Always provide a toString method! It helps to
debug if you can visualize the state of your objects!

26

String methods in Java

• Useful methods (also check String javadoc page)
• indexOf(string) : int
• indexOf(string, startIndex) : int
• substring(fromPos, toPos) : String
• substring(fromPos) : String
• charAt(int index) : char
• equals(other) : bool ß Always use this!
• toLowerCase() : String
• toUpperCase() : String
• compareTo(string) : bool
• length() : int
• startsWith(string) : bool

• Understand special cases!
27

