
CSCI 136
Data Structures &

Advanced Programming

Lecture 28
Fall 2017

Instructors: Bill Bill

2

Announcements

• Dzung will be moving his TA hours from 2-
4pm Saturday to 2-4pm Sunday this week.

3

Last Time

• More on Graphs
• Applications and Problems

• Testing connectedness
• Counting connected components
• Breadth-first search
• Depth-first search

– And recursive depth-first search

• Directed Graphs : Introduction

4

Today’s Outline

• Directed Graphs
• Definition and Properties
• Reachability and (Strong) Connectedness

• Graph Data Structures: Implementation
• Graph Interface
• Adjacency Array Implementation Basic Concepts
• Adjacency List Implementation Basic Concepts
• Adjacency Array Implementation Details

5

Java
Data Structures

Organization

Discrete Math Theory
Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics
Linear Algebra

Directed Graphs

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the
destination/target is v.

Note: (u,v) ≠ (v,u)

6

Directed Graphs

• The (out) neighbors of B
are D, G, H: B has out-
degree 3

• The in neighbors of B are
A, C: B has in-degree 2

• A has in-degree 0: it is a
source in G; D has out-
degree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges
u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

but now ei = (vi-1,vi): all edges point along direction of walk

7

Directed Graphs

• A, B, H, E, D is a walk from
A to D

• It’s also a (simple) path
• D, E, H, B, A is not a walk

from D to A
• B, G, F, C, B is a (directed)

cycle (it’s a 4-cycle)
• So is H, E, H (a 2-cycle)

• D is reachable from A (via path A, B, D), but A is not
reachable from D

• In fact, every vertex is reachable from A

8

Directed Graphs

• A BFS of G from A visits
every vertex

• A BFS of G from F visits all
vertices but A

• A BFS of G from E visits
only E, H, D

• Connectivity in directed graphs is more subtle than in
undirected graphs!

9

Directed Graphs
• Vertices u and v are mutually

reachable vertices if there are
paths from u to v and v to u

• Maximal sets of mutually
reachable vertices form the
strongly connected
components of G

10

Implementing Graphs

• Involves a number of implementation
decisions, depending on intended uses
• What kinds of graphs will be availabe?

• Undirected, directed, mixed

• What underlying data structures will be used?
• What functionality will be provided
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

11

Graphs in structure5

• We want to store information at vertices and
at edges, but we favor vertices
• Let V and E represent the types of information

held by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex
• Type E holds a label for an (available) edge
• Label: Application-specific data for a vertex/edge

12

Graphs in structure5

• The methods described in the Structure
interface deal wih vertices
• but also impact edges: e.g., clear()

• We’ll want to add a number of similar
methods to provide information about edges,
and the graph itself

13

Recall: Desired Functionality

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?
• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges
incident with v)

14

Graph Interface Methods
• void add(V vLabel), V remove(V vLabel)

• Add/remove vertex to graph

• void addEdge(V vLabel1, V vLabel2, E edgeLabel),

E removeEdge(V vLabel1, V vLabel2)
• Add/remove edge between vLabel1 and vLabel2

• boolean containsEdge(V vLabel1, V vLabel2)

• Returns true iff there is an edge between vLabel1 and vLabel2

• Edge<V,E> getEdge(V vLabel1, V vLabel2)

• Returns edge between vLabel1 and vLabel2

• void clear()

• Remove all nodes (and edges) from graph

15

Graph Interface Methods
• boolean visit(V vLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”
• boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)

• Returns true iff vertex/edge has been visited
• Iterator<V> neighbors(V vLabel)

• Get iterator for all neighbors of vLabel
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges

16

Edge Class

• Graph edges are defined in their own public class
• Edge<V,E>(V vLabel1, V vLabel2,

E label, boolean directed)

• Construct a (possibly directed) edge between two labeled
vertices (vLabel1 à vLabel2)

• vLabel1 : here; vLabel2 : there

• Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

17

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

18

Breadth-First Search
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

19

Breadth-First Search of Edges
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

20

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count=1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

21

Recursive Depth-First Search
int DFS(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))

count += DFS(g, next);
}

}
return count;

}

22

Representing Graphs
• Two standard approaches

• Option 1: Array-based (directed and undirected)
• Option 2: List-based (directed and undirected)

• We’ll look at both
• Array-based graphs store the edge information in a 2-

dimensional array indexed by the vertices
• List-based graphs store the edge information in a (1-

dimensional) array of lists
• The array is indexed by the vertices
• Each array element is a list of edges incident with that vertex

23

Adjacency Array: Directed Graph

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise
E.G.: edges(B,C) = 1 but edges(C,B) = 0

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0

24

Adjacency Array: Undirected Graph

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

25

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

26

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given
vertex

27

Graph Classes in structure5

28

Graph Classes in structure5

Why so many?!

• There are two types of graphs: undirected & directed

• There are two implementations: arrays and lists

• We want to be able to avoid large amounts of identical

code in multiple classes

• We abstract out features of implementation common to

both directed and undirected graphs

We’ll tackle array-based graphs first....

