CSCI 136
Data Structures &
Advanced Programming

Lecture 28
Fall 2017

N

Instructors: Bill Bill
.

Announcements

e Dzung will be moving his TA hours from 2-
4pm Saturday to 2-4pm Sunday this week.

Last Time

* More on Graphs

* Applications and Problems
e Testing connectedness
e Counting connected components
* Breadth-first search

e Depth-first search

— And recursive depth-first search

e Directed Graphs : Introduction

Today s Outline

* Directed Graphs

e Definition and Properties

* Reachability and (Strong) Connectedness

e Graph Data Structures: Implementation

* Graph Interface

o Adj
e Adj

o Adj

acency Array Implementation Basic Concepts
acency List Implementation Basic Concepts

acency Array Implementation Details

Directed Graphs

S Graphics

Linear Algebra |

Algorithms
Compilers

Discrete Math

Data Structures
Java < .
Organizaton —— Operating Systems

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the

destination/target is v.

Note: (u,v) # (V,Uu)

Directed Graphs

* The (out) neighbors of B
are D, G, H: B has out-
degree 3

* The in neighbors of B are
A, C: B has in-degree 2

« Ahasin-degree O:itis a
source in G; D has out-
degree O: it is a sink in G

A walk is still an alternating sequence of vertices and edges
U=Vye€,V5€5 VeV € Vi =V
but now e, = (v,.{,V,): all edges point along direction of walk

Directed Graphs

A, B, H, E, D is awalk from
AtoD

It's also a (simple) path

D, E, H, B, Ais not a walk
from D to A

B, G, F, C, Bis a(directed)
cycle (it's a 4-cycle)

Sois H, E, H (a 2-cycle)

D is reachable from A (via path A, B, D), but A is not
reachable from D
In fact, every vertex is reachable from A

Directed Graphs

A BFS of G from A visits
every vertex

A BFS of G from F visits all
vertices but A

A BFS of G from E visits
only E,H, D

Connectivity in directed graphs is more subtle than in
undirected graphs!

Directed Graphs

* Vertices u and v are mutually
reachable vertices if there are
paths fromutovandvtou

* Maximal sets of mutually
reachable vertices form the
strongly connected
components of G

Implementing Graphs

* Involves a number of implementation
decisions, depending on intended uses

* What kinds of graphs will be availabe!?

e Undirected, directed, mixed
* What underlying data structures will be used?
* What functionality will be provided
* What aspects will be public/protected/private

* We'll focus on popular implementations for
undirected and directed graphs (separately)

Graphs in structure5

* We want to store information at vertices and
at edges, but we favor vertices

* Let V and E represent the types of information
neld by vertices and edges respectively

* |Interface Graph<V,E> extends Structure<V>

* Vertices are the building blocks; edges depend on them

* Type V holds a label for a (hidden) vertex

* Type E holds a label for an (available) edge
* Label: Application-specific data for a vertex/edge

Graphs in structure5

e The methods described in the Structure
interface deal wih vertices

* but also impact edges: e.g., clear()
 We'll want to add a number of similar

methods to provide information about edges,
and the graph itself

Recall: Desired Functionality

* What are the basic operations we need to
describe algorithms on graphs!?

Given vertices u and v: are they adjacent!
Given vertex v and edge e, are they incident?
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

e The vertices adjacent to v are called its neighbors

Get a list of the neighbors of v (or the edges
incident with v)

Graph Interface Methods

void add(V vlLabel), V remove(V vLabel)
e Add/remove vertex to graph
void addEdge(V vLabell, V vLabel2, E edgelabel),
E removeEdge(V vlLabell, V vLabel2)
e Add/remove edge between vlLabell and vLabel2
boolean containsEdge(V vlLabell, V vLabel2)
e Returns true iff there is an edge between vlLabell and vLabel2
Edge<V,E> getEdge(V vLabell, V vLabel2)
e Returns edge between vlLabell and vLabel2
void clear()

 Remove all nodes (and edges) from graph

Graph Interface Methods

boolean visit(V vLabel)
e Mark vertex as “visited” and return previous value of visited flag
boolean visitEdge(Edge<V,E> e)
e Mark edge as “visited”
boolean isVisited(V vlLabel), boolean isVisitedEdge(Edge<V,E> e)
e Returns true iff vertex/edge has been visited
Iterator<V> neighbors(V vlLabel)
* Get iterator for all neighbors of vLabel
* For directed graphs, out-edges only
Iterator<V> iterator ()
* Get vertex iterator
void reset()
* Remove visited flags for all nodes/edges

Edge Class

* Graph edges are defined in their own public class

e Edge<V,E>(V vLabell, V vLabel2,
E label, boolean directed)

e Construct a (possibly directed) edge between two labeled
vertices (vLabell -> vLabel?)

e vLabell : here; vLabel2 : there

e Useful methods:

label(), here(), there()
setLabel(), isVisited(), isDirected()

Reachability: Breadth-First Search

BFS(G, v) /7 Do a breadih-first search of G starting at v
// pre: all vertices are marked as unvisited
/7 post: return number of visited vertices
count € 0:
Create empty queue (J; enqueue v; mark v as visited; count++
While Q) isn t empry

current < Q.dequeue();

Jor each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
relurn count:

Breadth-First Search

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueuelList<V>(); int count
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<v> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue (next);

}

return count;

0;

Breadth-First Search of Edges

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<vV> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.1sVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;

Recursive Depth-First Search

// Before furst call to DFS, set all vertices to unvisited
//Then call DFES(G,v)
DFES(G, v)
Mark v as visued: count=1;
Jor each unvisited neighbor u of v:
count +=DFES(G,uw);

return count;

20

Recursive Depth-First Search

int DFS(Graph<V,E> g, V src) {
g.visit(src);

int count = 1;
Iterator<vV> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))
count += DFS(g, next);
}
}

return count;

}

21

Representing Graphs

* Two standard approaches

e Option I: Array-based (directed and undirected)
e Option 2: List-based (directed and undirected)
* We'll look at both

* Array-based graphs store the edge information in a 2-
dimensional array indexed by the vertices

e List-based graphs store the edge information in a (|-
dimensional) array of lists

* The array is indexed by the vertices

* Each array element is a list of edges incident with that vertex

22

Adjacency Array: Directed Graph

T|IO|M M OO|P|>

o|lo|o|o|o|o|o|o|>»
o|lo|o|lo|lo|—|o|—|w
o|lo|—|o|lo|o|lo|—|0O
o|lo|—|—|Oo|—|—|©|O
—|lo|lo|lo|lo|lo|lo|lo|m
o|l—|o|lo|lo|lo|lo|o|m
o|lo|lo|lo|lo|o(—|—|0O
o|lo|lo|—|o|o|—|—|T

Entry (i,j) stores 1 if there is an edge from i to j; O otherwise
E.G.: edges(B,C) = 1 but edges(C,B) =0

23

Adjacency Array: Undirected Graph

A|B|C|D|E |F |G|H
A0 (I (I [0 ({0 |0 |I |I
B (I (O (I (I [O O |I |I
cit {rj{oj{rjo (1 (o (o
DO (I (I (O |l |l]JO |O
E (O (O (O (I [O |O |O |I
F (O (O (I {1 |O|O |I |O
G|l {I {00]|O (I (O (O
H({l (I {0 [0 |l |0]|O |O

Entry (i,j) store 1 if there is an edge between i and j; else O
E.G.: edges(B,C) = 1 = edges(C,B)

24

Adjacency List : Directed Graph

A —>» B —>» C —>» G —>» H
B —>» D —» G —>» H

C —>» B —>» D

D

E » D —>» H

F —» C —>» D

G —>» F

H —>» E

The vertices are stored in an array V]
V[] contains a linked list of edges having a given source

25

Adjacency List : Undirected Graph

e
L
i

T (@] M m) @ o~} >

R

o~] o~] lw) T (@] >°) (@] (@]

Y Y Y Y Yy ov oy

> > @ W) o > > w

!

The vertices are stored in an array V]
V[] contains a linked list of edges incident to a given
vertex

26

Graph Classes in structure5

Interface Abstract Class
Structure
Graph
A
GraphMatrix
GraphMatrixDirected GraphMatrixUndirected

Class

AbstractStructure

A

GraphlList

GraphListDirected

Vertex

RN

GraphMatrixVertex

GraphlListVertex

Edge

GraphListUndirected

Graph Classes in structure5

Why so many?!

e There are two types of graphs: undirected & directed

e There are two implementations: arrays and lists

 We want to be able to avoid large amounts of identical
code in multiple classes

 \We abstract out features of implementation common to

both directed and undirected graphs

WEe'll tackle array-based graphs first....

28

