CSCI 136 Data Structures \& Advanced Programming

Lecture 28
Fall 2017
Instructors: Bill

Announcements

- Dzung will be moving his TA hours from 24 pm Saturday to $2-4 \mathrm{pm}$ Sunday this week.

Last Time

- More on Graphs
- Applications and Problems
- Testing connectedness
- Counting connected components
- Breadth-first search
- Depth-first search
- And recursive depth-first search
- Directed Graphs : Introduction

Today's Outline

- Directed Graphs
- Definition and Properties
- Reachability and (Strong) Connectedness
- Graph Data Structures: Implementation
- Graph Interface
- Adjacency Array Implementation Basic Concepts
- Adjacency List Implementation Basic Concepts
- Adjacency Array Implementation Details

Directed Graphs

Def'n: In a directed graph $G=(V, E)$, each edge e in E is an ordered pair: $e=(u, v)$ vertices: its incident vertices. The source of e is u; the destination/target is v .

Note: $(u, v) \neq(\mathrm{v}, \mathrm{u})$

Directed Graphs

- The (out) neighbors of B are D, G, H: B has outdegree 3
- The in neighbors of B are A, C: B has in-degree 2
- A has in-degree 0: it is a source in G; D has outdegree 0 : it is a sink in G

A walk is still an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

but now $e_{i}=\left(v_{i-1}, v_{i}\right)$: all edges point along direction of walk

Directed Graphs

- A, B, H, E, D is a walk from A to D
- It's also a (simple) path
- D, E, H, B, A is not a walk from D to A
- B, G, F, C, B is a (directed) cycle (it's a 4-cycle)
- So is H, E, H (a 2-cycle)

- D is reachable from A (via path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A

Directed Graphs

- A BFS of G from A visits every vertex
- A BFS of G from F visits all vertices but A
- A BFS of G from E visits only E, H, D

- Connectivity in directed graphs is more subtle than in undirected graphs!

Directed Graphs

- Vertices u and v are mutually reachable vertices if there are paths from u to v and v to u
- Maximal sets of mutually reachable vertices form the strongly connected components of G

Implementing Graphs

- Involves a number of implementation decisions, depending on intended uses
- What kinds of graphs will be availabe?
- Undirected, directed, mixed
- What underlying data structures will be used?
- What functionality will be provided
- What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- We want to store information at vertices and at edges, but we favor vertices
- Let V and E represent the types of information held by vertices and edges respectively
- Interface Graph<V,E> extends Structure<V>
- Vertices are the building blocks; edges depend on them
- Type V holds a label for a (hidden) vertex
- Type E holds a label for an (available) edge
- Label: Application-specific data for a vertex/edge

Graphs in structure5

- The methods described in the Structure interface deal wih vertices
- but also impact edges: e.g., clear()
- We'll want to add a number of similar methods to provide information about edges, and the graph itself

Recall: Desired Functionality

- What are the basic operations we need to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v ? (degree of v)
- The vertices adjacent to v are called its neighbors
- Get a list of the neighbors of v (or the edges incident with v)

Graph Interface Methods

- void add(V vLabel), V remove(V vLabel)
- Add/remove vertex to graph
- void addEdge(V vLabell, V vLabel2, E edgeLabel),

E removeEdge(V vLabell, V vLabel2)

- Add/remove edge between vLabell and vLabel2
- boolean containsEdge(V vLabell, V vLabel2)
- Returns true iff there is an edge between vLabell and vLabel2
- Edge<V,E> getEdge(V vLabell, V vLabel2)
- Returns edge between vLabell and vLabel2
- void clear()
- Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vLabel)
- Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
- Mark edge as "visited"
- boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)
- Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vLabel)
- Get iterator for all neighbors of vLabel
- For directed graphs, out-edges only
- Iterator<V> iterator()
- Get vertex iterator
- void reset()
- Remove visited flags for all nodes/edges

Edge Class

- Graph edges are defined in their own public class
- Edge<V,E>(V vLabel1, V vLabel2,

```
    E label, boolean directed)
```

- Construct a (possibly directed) edge between two labeled vertices (vLabel1 \rightarrow vLabel2)
- vLabell : here; vLabel2 : there
- Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited
// post: return number of visited vertices
count $\leftarrow 0$;
Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty
current \leftarrow Q.dequeue();
for each unvisited neighbor u of current :
add u to Q; mark u as visited; count++
return count;

Breadth-First Search

```
int BFS(Graph<V,E> g, V src) {
    Queue<V> todo = new QueueList<V>(); int count = 0;
    g.visit(src); count++;
    todo.enqueue(src);
    while (!todo.isEmpty()) {
        V node = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(node);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next)) {
                g.visit(next); count++;
                todo.enqueue(next);
            }
        }
    }
    return count;
}
```


Breadth-First Search of Edges

```
int BFS(Graph<V,E> g, V src) {
    Queue<V> todo = new QueueList<V>(); int count = 0;
    g.visit(src); count++;
    todo.enqueue(src);
    while (!todo.isEmpty()) {
        V node = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(node);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
            if (!g.isVisited(next)) {
                g.visit(next); count++;
                todo.enqueue(next);
            }
        }
    }
    return count;
}
```


Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
$D F S(G, v)$
Mark v as visited; count=1;
for each unvisited neighbor u of v:

$$
\text { count }+=\operatorname{DFS}(G, u) ;
$$

return count;

Recursive Depth-First Search

```
int DFS(Graph<V,E> g, V src) {
        g.visit(src);
        int count = 1;
        Iterator<V> neighbors = g.neighbors(src);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next))
                        count += DFS(g, next);
        }
    }
    return count;
}
```


Representing Graphs

- Two standard approaches
- Option I: Array-based (directed and undirected)
- Option 2: List-based (directed and undirected)
- We'll look at both
- Array-based graphs store the edge information in a 2dimensional array indexed by the vertices
- List-based graphs store the edge information in a (Idimensional) array of lists
- The array is indexed by the vertices
- Each array element is a list of edges incident with that vertex

Adjacency Array: Directed Graph

	A	B	C	D	E	F	G	H
A	0	I	I	0	0	0	I	I
B	0	0	0	I	0	0	I	I
C	0	I	0	I	0	0	0	0
D	0	0	0	0	0	0	0	0
E	0	0	0	I	0	0	0	I
F	0	0	I	I	0	0	0	0
G	0	0	0	0	0	I	0	0
H	0	0	0	0	I	0	0	0

Entry (i, j) stores 1 if there is an edge from i to j ; 0 otherwise E.G.: edges $(B, C)=1$ but edges $(C, B)=0$

Adjacency Array: Undirected Graph

	A	B	C	D	E	F	G	H
A	0	I	I	0	0	0	I	I
B	I	0	I	I	0	0	I	I
C	I	I	0	I	0	I	0	0
D	0	I	I	0	I	I	0	0
E	0	0	0	I	0	0	0	I
F	0	0	I	I	0	0	I	0
G	I	I	0	0	0	I	0	0
H	I	I	0	0	I	0	0	0

Entry (i, j) store 1 if there is an edge between i and j ; else 0 E.G.: edges $(B, C)=1=\operatorname{edges}(C, B)$

Adjacency List : Directed Graph

A	$\longrightarrow B$	$\rightarrow \mathrm{C}$	$\longrightarrow C$	$\longrightarrow \mathrm{H}$
B	$\longrightarrow \mathrm{D}$	$\rightarrow \mathrm{C}$	$\rightarrow \mathrm{H}$	
C	\rightarrow B	$\rightarrow \mathrm{D}$		
D				
E	$\rightarrow \mathrm{D}$	$\rightarrow \mathrm{H}$		
F	$\rightarrow \mathrm{C}$	\rightarrow D		
G	$\rightarrow F$			
H	$\rightarrow E$			

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

Adjacency List : Undirected Graph

The vertices are stored in an array V[] V[] contains a linked list of edges incident to a given vertex

Graph Classes in structure5

Graph Classes in structure5

Why so many?!

- There are two types of graphs: undirected \& directed
- There are two implementations: arrays and lists
- We want to be able to avoid large amounts of identical code in multiple classes
- We abstract out features of implementation common to both directed and undirected graphs

We'll tackle array-based graphs first....

