
CSCI 136
Data Structures &

Advanced Programming

Lecture 28
Fall 2017

Instructors: Bill Bill

2

Last Time

• More on Graphs
• Built up a vocabulary to talk about graphs
• Proved some things about graphs
• Introduced:

• Connectedness
• Reachability

3

This Time

• More on Graphs
• Applications and Problems

• Testing connectedness
• Counting connected components
• Breadth-first
• Depth-first search

– And recursive depth-first search

• Directed Graphs : Introduction

4

Next Time?

• More Directed Graphs
• Reachability and (Strong) Connectedness

• Graph Data Structures: Implementation
• Graph Interface
• Adjacency Array Implementation Basic Concept
• Adjacency List Implementation Basic Concept
• Adjacency Array Implementation Details

5

Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest subgraph connecting all vertices

– Called a connected, spanning subgraph

• What is a cheapest path from u to v?

• And more....

6

Operations on Graphs

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?
• Given vertex v and edge e, are they incident?

• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the vertices adjacent to v
• From which we can get the edges incident with v

7

Testing Connectedness

• How can we determine whether G is
connected?
• Pick a vertex v; see if every vertex u is reachable

from v

• How could we do this?
• Visit the neighbors of v, then visit their neighbors,

etc. See if you reach all vertices
• Assume we can mark a vertex as “visited”

• How do we manage all of this visiting?
• Let’s try an example…

8

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to |V|

9

BFS Reflections

• The BFS algorithm traced out a tree Tv: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

• Tv is called a BFS tree of G with root v
• The vertices of Tv are visited in level-order

• This reveals a natural measure of distance
between vertices: the length of (any) shortest
path between the vertices

10

Distance in Undirected Graphs

Definition: The distance between two vertices u
and v in an undirected graph G=(V,E) is the
minimum of the path lengths over all u-v paths.
• Distance is the depth of u in Tv (a BFS tree

from v)
• We write distance as d(u,v)

11

Distance in Undirected Graphs

• Distance satisfies the following properties:
• d(u,u) = 0, for all u∈V
• d(u,v) = d(v,u), for all u,v∈V
• d(u,v) ≤ d(u,w)+d(w,v), for all u,v,w∈V

• The last property is call the triangle inequality

12

Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty stack S; push v; mark v as visited; count++;
While S isn’t empty

current ßS.pop();
for each unvisited neighbor u of current :

add u to S; mark u as visited; count++
return count;

Now compare value returned from DFS(G,v) to |V|

13

DFS Reflections

• The DFS algorithm traced out a tree different
from that produced by BFS
• It still consists of the edges connecting a visited

vertex to (as yet) unvisited neighbors

• It is called a DFS tree of G with root v

• Vertices are visited in pre-order w.r.t. the tree
• By manipulating the stack differently, we could

produce a post-order version of DFS
• And perhaps write DFS recursively….

14

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....

15

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
• Proof: Induction on length d of shortest path
from v to w
• Base case: d = 0: Then v = w ✓
• Ind. Hyp.: Assume DFS visits all vertices w of

distance at most d from v (for some d ≥ 0).
• Ind. Step: Suppose now that w is distance d+1

from v. Consider a path of length d+1 from v to
w and let u be the next-to-last vertex on the path.

16

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
• Proof: Induction on length d of shortest path
from v to w
• The path is v = v0, v1, v2, ... , vd = u, vd+1 = w

• (The edges are implied so not explicitly written!)

• By Ind. Hyp., u is visited. At this point, if w has not
yet been visited, it will be one of the unvisited
vertices on which DFS() is recursively called, so it
will then be visited.

17

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v
• Idea: Prove by induction on number of times
DFS is called that DFS is only called on vertices
w reachable from v
Claim: DFS counts correctly the number of
vertices reachable from v
• Idea: Induction on number of unvisited

vertices reachable from v
• DFS will never be called on same vertex twice

18

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited
nodes reachable from v
Proof: Uses previous two observations
• DFS visits every node reachable from v
• DFS doesn’t visit any node not reachable from v

19

Java
Data Structures

Organization

Discrete Math Theory
Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics
Linear Algebra

Directed Graphs

Definition: In a directed graph G=(V,E), each edge e in E is an
ordered pair: e=(u,v) vertices: its incident vertices. The source of e is
u; the destination/target is v.

Note: (u,v) ≠ (v,u)

20

Directed Graphs

• The (out) neighbors of B are
D, G, H: B has out-degree 3

• The in neighbors of B are A, C:
B has in-degree 2

• A is a source in G: A has in-
degree 0

• D is sink in G: D has out-
degree 0

A walk is still an alternating sequence of vertices and edges
u = v0,e1,v1,e2,v2,...,vk-1,ek,vk = v

but now ei=(vi-1,vi): all edges point along direction of walk

21

Directed Graphs

• A, B, H, E, D is a walk from A
to D

• It’s also a (simple) path
• D, E, H, B, A is not a walk from

D to A
• B, G, F, C, B is a (directed)

cycle (it’s a 4-cycle)
• So is H, E, H (a 2-cycle)

• D is reachable from A (via path A, B, D), but A is not reachable
from D

• In fact, every vertex is reachable from A

22

Directed Graphs

• A BFS of G from A visits
every vertex

• A BFS of G from F visits all
vertices but A

• A BFS of G from E visits
only E, H, D

• Connectivity in directed graphs is more subtle than in
undirected graphs!

23

Directed Graphs
• Vertices u and v are mutually

reachable vertices if there are
paths from u to v and v to u

• Maximal sets of mutually
reachable vertices form the
strongly connected components of G

24

Implementing Graphs

• Involves a number of implementation
decisions, depending on intended uses
• What kinds of graphs will be availabe?

• Undirected, directed, mixed

• What underlying data structures will be used?
• What functionality will be provided
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

