CSCI 136
 Data Structures \&
 Advanced Programming

Lecture 27
Fall 2017
Instructors: Bill Bill

Last Time

- Introduction To Graphs
- Definitions and Properties: Undirected Graphs

Today's Outline

- More on Graphs
- Applications and Problems
- Testing connectedness
- Counting connected components
- Breadth-first and Depth-first search
- Directed Graphs
- Definition and Properties
- Reachability and (Strong) Connectedness
- Graph Data Structures: Preliminaries
- Graph Interface

Basic Definitions \& Concepts

- Definition: An undirected graph $G=(\mathrm{V}, \mathrm{E})$ consists of two sets:
- V : the vertices of G
- E : the edges of G
- Each edge e in E is defined by a set of two vertices: its incident vertices
- We write $e=\{u, v\}$ and say that u and v are adjacent
- The degree of a vertex is the number of incident edges (loops counted twice)

Walking Along a Graph

- A walk from u to v in a graph $G=(V, E)$ is an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-l}, e_{k}, v_{k}=v
$$

such that each $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, k$

- Note a walk starts and ends on a vertex
- If no edge appears more than once then the walk is called a path
- If no vertex appears more than once then the walk is a simple path

Walking In Circles

- A closed walk in a graph $G=(\mathrm{V}, \mathrm{E})$ is a walk

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

such that $v_{0}=v_{k}$ (it ends at the starting v)

- A circuit is a path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
-Circuit vs. closed walk? Circuit has no repeat edges
- A cycle is a simple path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ - Circuit vs. cycle? Cycle has no repeated vertices.
- The length of any of these is the number of edges in the sequence

Little Tiny Theorems

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to v (and v to u)
- Every circuit through v contains a cycle through v
- Not every closed walk through v contains a cycle through v ! [Try to find an example!]

A Basic Graph Fact

- Denote the degree of a vertex v by $\operatorname{deg}(v)$.
- Theorem: For any graph $G=(V, E)$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

where $|E|$ is the number of edges in G

- Proof Hint: Induction on $|\mathrm{E}|$: How does removing an edge change the equation?
- Instead: Count pairs (v, e) where v is incident with e

Reachability and Connectedness

- Definition: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u iff u is reachable from v
- Definition: An undirected graph G is connected if for every pair of vertices (u, v) in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the connected component of v

Basic Graph Algorithms

- We'll look at a number of graph algorithms
- Connectedness: Is G connected?
- If not, how many connected components does G have?
- Cycle testing: Does G contain a cycle?
- Does G contain a cycle through a given vertex?
- If the edges of G have costs:
- What is the cheapest subgraph connecting all vertices
- Called a connected, spanning subgraph
- What is a cheapest path from u to v ?
- And more....

Operations on Graphs

- What are the basic operations we need to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v? (degree of v)
- The vertices adjacent to v are called its neighbors
- Get a list of the vertices adjacent to v
- From which we can get the edges incident with v

Testing Connectedness

- How can we determine whether G is connected?
- Pick a vertex v; see if every vertex u is reachable from v
- How could we do this?
- Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices
- Assume we can mark a vertex as "visited"
- How do we manage all of this visiting?
- Let's try an example...

Reachability: Breadth-First Search

BFS (G, v) $\quad / /$ Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count $\leftarrow 0$;
Create empty queue Q; enqueue v; mark v as visited; count ${ }^{++}$
While Q isn't empty
current \leftarrow Q.dequeue(); for each unvisited neighbor u of current:
add u to Q; mark u as visited; count++
return count;

Now compare value returned from $\operatorname{BFS}(\mathrm{G}, \mathrm{v})$ to $|\mathrm{V}|$

