
CSCI 136
Data Structures &

Advanced Programming

Lecture 27
Fall 2017

Instructors: Bill Bill

2

Last Time

• Introduction To Graphs
• Definitions and Properties: Undirected Graphs

3

Today’s Outline

• More on Graphs
• Applications and Problems

• Testing connectedness
• Counting connected components

– Breadth-first and Depth-first search

• Directed Graphs
• Definition and Properties

• Reachability and (Strong) Connectedness

• Graph Data Structures: Preliminaries
• Graph Interface

4

Basic Definitions & Concepts

• Definition: An undirected graph G = (V,E)
consists of two sets:
• V : the vertices of G
• E : the edges of G

• Each edge e in E is defined by a set of two vertices: its
incident vertices

• We write e={u,v} and say that u and v are adjacent

• The degree of a vertex is the number of incident edges
(loops counted twice)

5

Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k

• Note a walk starts and ends on a vertex
• If no edge appears more than once then

the walk is called a path

• If no vertex appears more than once then
the walk is a simple path

6

Walking In Circles

• A closed walk in a graph G = (V,E) is a walk

v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that v0 = vk (it ends at the starting v)

• A circuit is a path where v0 = vk
•Circuit vs. closed walk?

• A cycle is a simple path where v0 = vk
•Circuit vs. cycle?

• The length of any of these is the number of
edges in the sequence

Circuit has no repeat edges

Cycle has no repeated vertices.

7

Little Tiny Theorems

• If there is a walk from u to v, then there is a
walk from v to u.

• If there is a walk from u to v, then there is a
path from u to v (and from v to u)

• If there is a path from u to v, then there is a
simple path from u to v (and v to u)

• Every circuit through v contains a cycle
through v

• Not every closed walk through v contains a
cycle through v! [Try to find an example!]

8

A Basic Graph Fact

• Denote the degree of a vertex v by deg(v).
• Theorem: For any graph G = (V,E)

where |E| is the number of edges in G
• Proof Hint: Induction on |E|: How does

removing an edge change the equation?
• Instead: Count pairs (v,e) where v is incident with e

deg(v)
v∈V
∑ = 2 | E |

9

Reachability and Connectedness

• Definition: A vertex v in G is reachable from
a vertex u in G if there is a path from u to v
• v is reachable from u iff u is reachable from v

• Definition: An undirected graph G is
connected if for every pair of vertices (u, v) in
G, v is reachable from u (and vice versa)

• The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

10

Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest subgraph connecting all vertices

– Called a connected, spanning subgraph

• What is a cheapest path from u to v?

• And more....

11

Operations on Graphs

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?
• Given vertex v and edge e, are they incident?

• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the vertices adjacent to v
• From which we can get the edges incident with v

12

Testing Connectedness

• How can we determine whether G is
connected?
• Pick a vertex v; see if every vertex u is reachable

from v

• How could we do this?
• Visit the neighbors of v, then visit their neighbors,

etc. See if you reach all vertices
• Assume we can mark a vertex as “visited”

• How do we manage all of this visiting?
• Let’s try an example…

13

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to |V|

