CSCI 136

Data Structures \&
Advanced Programming

Lecture 26
Fall 2017
Instructors: Bill<<1

Administrative Details

- Lab 10: Two Towers is online
- No partners this week!
- Final Exam location: TBL I 12
- Old news: It's on Dec. 14 ${ }^{\text {th }}$, 9:30--noon

Last Time

- Efficient Binary search trees (Ch I4)
- AVL Trees
- Height is $\mathrm{O}(\log \mathrm{n})$, so all operations are $\mathrm{O}(\log \mathrm{n})$
- Red-Black Trees
- Different height-balancing idea: height is $\mathrm{O}(\log \mathrm{n})$
- All operations are $\mathrm{O}(\log \mathrm{n})$
- Splay Trees
- No guaranteed balance; good amortized performance
- Any sequence of m operations take $O(m \log n)$ time

Today's Outline

Less esoteric...

- Bit operations
- Useful in general and required for Lab 10
- Introduction To Graphs
- Basic Definitions and Properties
- Applications and Problems

Representing Numbers

- Humans usually think of numbers in base 10
- But even though we write int $x=23$; the computer stores x as a sequence of 1 s and 0 s
- Recall Lab 3:
public static String printInBinary(int n) \{ if ($\mathrm{n}<=1$)
return " " + n\%2;
return printInBinary(n/2)+n\%2; \}
- 0000000000000000000000000001011 I

Bitwise Operations

- We can use bitwise operations to manipulate the 1 s and 0 s in the binary representation
- Bitwise 'and': \&
- Bitwise 'or': |
- Also useful: bit shifts
- Bit shift left: <<
- Bit shift right: >>

\& and

- Given two integers a and b, the bitwise or expression $\mathrm{a} \mid \mathrm{b}$ returns an integer s.t.
- At each bit position, the result has a 1 if that bit position had a 1 in EITHER a OR b (or both)
- 3 | $6=$?
- Given two integers a and b, the bitwise and expression $\mathrm{a} \& \mathrm{~b}$ returns an integer s.t.
- At each bit position, the result has a 1 if that bit position had a 1 in BOTH a AND b
- 3 \& $6=$?

>> and <<

- Given two integers a and i, the expression ($\mathrm{a} \ll \mathrm{i}$) returns ($\mathrm{a} * 2^{\mathrm{i}}$)
- Why? It shifts all bits left by i positions
- 1 << 4 = ?
- Given two integers a and i, the expression (a >> i) returns (a / 2i)
- Why? It shifts all bits right by i positions
- 1 >> 4 = ?
- 97 >> 3 = ? (97 = 1100001)
- Be careful about shifting left and "overflow"!!!

Revisiting printlnBinary(int n)

- How would we rewrite a recursive printInBinary using bit shifts and bitwise operations?
public static String printInBinary(int n) \{
if $(\mathrm{n}<=1)\{$
\quad return " " +n ;
return printInBinary $(\mathrm{n} \gg 1)+(\mathrm{n} \& 1)$; \}

Revisiting printlnBinary(int n)

- How would we write an iterative printInBinary using bit shifts and bitwise operations?
public static String printInBinary(int n, int width) \{

```
String result = "";
```

for (int $i=0 ; i<w i d t h ; i++)$
if $((n \&(1 \ll i))==0)$
result $=0$ + result;
else
result = 1 + result;
return result;

Lab 8: Two Towers

- Goal: given a set of blocks, iterate through all possible subsets to find the best set

- "Best" set produces the most balanced towers
- Strategy: create an iterator that uses the bits in a binary number to represent subsets

Lab 8: Two Towers

- A block can either be in the set or out
- If bit is a 1 , in. If bit is a 0 , out

Questions?

- We will write a "Subsetlterator" to enumerate all possible subsets of a Vector<E>
- We will use Subsetlterator to solve two problems
- Two Towers
- Identify all Subsequences of a String that are words
- Use your LexiconTrie! (or an OrderedStructure)

Graphs Describe the World ${ }^{1}$

- Transportation Networks
- Communication Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling
${ }^{1}$ But don’t tell Tom Garrity----he'll just be sad....

Nodes = subway stops; Edges = track between stops

Nodes = cities; Edges = rail lines connecting cities

Note: Connections in graph matter, not precise locations of nodes

Internet (~1972)

Internet (~1998)

Word Game

CS Pre-requisite Structure (subset)

Nodes = courses; Edges = prerequisites $* * *$

Wire-Frame Models

Basic Definitions \& Concepts

Def'n: An undirected graph $G=(V, E)$ consists of two sets
$\cdot V$: the vertices of G, and E : the edges of G
-Each edge e in E is defined by a set of two vertices: its incident vertices. We write $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\}$ and say that u and v are adjacent.

Walking Along a Graph

- A walk from u to v in a graph $G=(V, E)$ is an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-l}, e_{k}, v_{k}=v
$$

such that each $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=l, \ldots, k$

- Note a walk starts and ends on a vertex
- If no edge appears more than once then the walk is called a path
- If no vertex appears more than once then the walk is a simple path

Walking In Circles

- A closed walk in a graph $G=(\mathrm{V}, \mathrm{E})$ is a walk

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-l}, e_{k}, v_{k}
$$

such that each $v_{0}=v_{k}$

- A circuit is a path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ - No repeated edges
- A cycle is a simple path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ - No repeated vertices
- The length of any of these is the number of edges in the sequence

Little Tiny Theorems

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to v (and v to u)
- Every circuit through v contains a cycle through v
- Not every closed walk through v contains a cycle through v ! [Try to find an example!]

