
CSCI 136
Data Structures &

Advanced Programming

Lecture 25
Fall 2017

Instructors: Bill2

2

Last Time

• Binary search trees (Ch 14)
• Implement the OrderStructure interface
• The locate(root, value) method

• returns either: node that stores value, or parent where
value would be inserted

• Many methods use locate
• contains
• add
• remove
• ...

3

Today’s Outline

• Binary search trees (Ch 14)
• Finish OrderStructure API

• add()/remove()

• Tree balancing to maintain small height
• rotate()

• Partial taxonomy of balanced tree species
• AVL Trees
• Splay Trees
• Red-Black Trees

4

Binary Search Trees

• A binary tree is a binary search tree if it is:
• Empty, or
• All nodes in the left subtree are less than or equal

to the root, all nodes in the right subtree are
greater than or equal to the root, and the left and
right subtrees are binary search trees.

• In our implementation, right subtrees only hold
values that are strictly greater than the root
• Why?

5

Add: Duplicate Values

6

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) {

root = newNode;
} else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(value,nodeValue) > 0)

insertLocation.setRight(newNode); // value > nodeValue
else

insertLocation.setLeft(newNode); // value <= nodeValue
}
count++;

}

Problem: If duplicate values are allowed in the BST, the left
subtree might not be empty when setLeft is called

7

How to Add Duplicate Values

How to perform: bst.add(“v”) ???

locate(“v”).setLeft(new BinaryTree (“v”)); ???

8

Strategy: Add Duplicates to
Predecessor

• If insertLocation has a left child:
• Find insertLocation’s predecessor, then

• Add duplicate node as right child of predecessor
• Why?
• Relationships among root, pred(root), and node?

• Make duplicate values the successor of their
predecessor!

9

Corrected: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) {

root = newNode;
} else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(value,nodeValue) > 0) {

// value > nodeValue
insertLocation.setRight(newNode);

} else {
// value <= nodeValue
if (insertLocation.left().isEmpty())

insertLocation.setLeft(newNode);
else

predecessor(insertLocation).setRight(newNode);
}
count++;

}

10

How to Find Predecessor?

11

Predecessor

// return node with largest value in root’s left subtree
// pre: root is not empty, root’s left child is not empty
protected BinaryTree<E> predecessor(BinaryTree<E> root) {

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}

“slide down”
the left subtree

12

Removal
• If we can remove the root, we can remove

any element in a BST in the same way
• Why?

• We need to implement:
• public E remove(E item)

• We can benefit from a helper:
• protected BT removeTop(BT top)

• removeTop(BT top) removes top, and returns the root
node of the resulting tree

• Assuming removeTop works, let’s implemet
remove

13

BST remove()

public E remove(E value) {
// base case 1: empty tree
if (isEmpty()) return null;

// base case 2: root contains value
if (value.equals(root.value())) {

E result = root.value();
count--;
root = removeTop(root);
return result;

}

. . .

14

BST remove()
// general case: find node that holds value, remove node,
// and re-attach resulting tree at node’s old location
BinaryTree<E> location = locate(root,value);
if (value.equals(location.value())) { // found node with value

count--;
BinaryTree<E> parent = location.parent();
if (parent.right() == location) { // removing right child

parent.setRight(removeTop(location));
} else { // removing left child

parent.setLeft(removeTop(location));
}
return location.value();

}

// value not found in tree, nothing to do
return null;

}

15

RemoveTop(topNode)

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other one
If left has no right child

make right the right child of left then return left
Otherwise find largest node C in left

// C is the right child of its own parent P
// C is the predecessor of right (ignoring topNode)

Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees

Cases
1 & 2

Case 3

General case

16

Case 1: No left binary tree

x

x.right x.right

17

Case 2: No right binary tree

x

x.left x.left

18

Case 3: Left has no right subtree

x.left

a.root

A

x

x.right

B

x.left

a.root

A

x.right

B

19

Case 4: General Case (HARD!)

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be >= root

• Strategy: replace the root with the largest
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s
left subtree!

20

Case 4: General Case (HARD!)

1

2

A

x

4

B

Replace root with predecessor(root),
then patch up the remaining tree

1

A

2

4

B

21

Case 4: General Case (HARD!)

Replace root with predecessor(root),
then patch up the remaining tree

1
2

A

x

4

D

B
C

3

1
2

A

3

4

D

B C

22

Let’s Write Some Code

• BinarySearchTree.java

23

But What About Height?

• Operations’ performance all depend on h
• Can we design a binary search tree that is

always “shallow” (minimizes h)?
• Yes! In many ways.
• AVL trees are one example
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

24

A

B

C

+2

+1

0

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree.

• A node with balance factor 1, 0, or -1 is considered
balanced.

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

25

A

B

C

+2

+1

0
A

B

C

0

00rotateLeft

Single Rotation

Unbalanced trees can be rotated to achieve balance.

26

Single Right Rotation

root

27

BinaryTree rotateRight()
// pre: this has a left subtree
// post: rotates local portion of tree so left child is root
protected void rotateRight() {

// establish pointers/relationships before mucking with the tree
BinaryTree<E> parent = parent;
BinaryTree<E> newRoot = left();
boolean wasChild = parent != null;
boolean wasLeftChild = isLeftChild();

// rotate!
setLeft(newRoot.right()); // hook in new root
newRoot.setRight(this); // make old root right child of new root
if (wasChild) {

// update parent pointers to rotated subtree
if (wasLeftChild) parent.setLeft(newRoot);
else parent.setRight(newRoot);

}
}

28

B

E

F

-2

01

A D
-10

C 0

D

E

F

-2

0-2

B
0

A 0 C
0

B

D

E

0

+10

A
0

F
0

C
0

Double Rotation

29

AVL Tree Facts
• A tree that is AVL except at root, where root

balance factor equals ±2 can be rebalanced
with at most 2 rotations

• add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance
factor changes and O(log n) (single or double)
rotations to restore AVL structure

• An AVL tree on n nodes has height O(log n)

30

AVL Trees have O(log n) Height
An AVL tree on n nodes has height O(log n)

Proof idea

• Show that an AVL tree of height h has at least fib(h)
nodes (easy induction proof---try it!)

• Recall (HW): 𝑓𝑖𝑏 ℎ ≥ 	 (()⁄), if h ≥ 10

• So 𝑛 ≥ 	 (()⁄), and thus log1
2⁄ 𝑛 ≥ ℎ

• Recall that for any 𝑎, 𝑏 > 0, log7 𝑛 =
9:;< =
9:;< 7

• So log7 𝑛 and log> 𝑛 are Big-O of one another

• So h is O(log n)

31

AVL Trees: One of Many

• There are many strategies for tree balancing to
preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height

32

Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove,
contains, get) on an n-node splay tree take at
most O(m log n) time.

33

Splay Tree Rotations
Right Zig Rotation (left version too)

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)

34

Splay Tree Iterator
• Even contains method changes splay tree shape
• This breaks the standard in-order iterator!

• Because the stack is based on the shape of the tree

• Solution: Remove the stack from the iterator
• Observation: Given location of current node (node

whose value is next to be returned), we can compute
it’s (in-order)successor in next()
• It’s either left-most leaf of right child of current, or
• It’s closest ”left-ancestor” of current

• Ancestor whose left child is also an ancestor of current

• Also, reset must “re-find” root
• Idea: Hold a single “reference” node, use it to find root

35

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves

have the same number of black nodes
• This is called the black height of the tree

36

A Red-Black Tree
(from Wikipedia.org)

37

Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes
has height satisfying	ℎ ≤ 2 log(𝑛 + 1)

Note: The tree will have exactly n+1 (empty) leaves

38

Red-Black Trees

Theorem: A Red-Black tree with n internal nodes has
height satisfying	ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree has all children with degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 	2,J , so log) 𝑛 + 1 ≥ 	ℎK ≥ ,
)

• Thus 2 log) 𝑛 + 1 ≥ 	ℎ

39

Red-Black Tree Insertion

40

Red-Black Tree Insertion

41

Red-Black Tree Insertion

42

Red-Black Tree Insertion

43

Red-Black Tree Insertion

