
CSCI 136
Data Structures &

Advanced Programming

Lecture 25
Fall 2017

Instructor: B2

2

Last Time

• Binary search trees (Ch 14)
• The locate method
• Further Implementation

3

Today’s Outline

• Binary search trees (Ch 14)
• Tree balancing to maintain small height

• AVL Trees

• Partial taxonomy of balanced tree species
• Red-Black Trees
• Splay Trees

4

But What About Height?

• Can we design a binary search tree that is
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

5

AVL Trees

6

• Balance Factor of a binary tree node:

• height of right subtree minus height of left subtree.

• A node with balance factor 1, 0, or -1 is considered
balanced.

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

• Definition: An AVL Tree is a binary tree in which every
node is balanced.

AVL Trees

7

AVL Trees have O(log n) Height
Theorem: An AVL tree on n nodes has height O(log n)

Proof idea
• Show that an AVL tree of height h has at least fib(h)

nodes (easy induction proof---try it!)

• Recall (HW): 𝑓𝑖𝑏 ℎ ≥ 	 (()⁄), if h ≥ 10

• So 𝑛 ≥ 	 (()⁄), and thus log1
2⁄ 𝑛 ≥ ℎ

• Recall that for any 𝑎, 𝑏 > 0, log7 𝑛 =
9:;< =
9:;< 7

• So log7 𝑛 and log> 𝑛 are Big-O of one another

• So h is O(log n)

8

A

B

C

+2

+1

0
A

B

C

0

00

Single Rotation

Unbalanced trees can be rotated to achieve balance.

9

Single Right Rotation

10

B

E

F

-2

01

A D
-10

C 0

D

E

F

-2

0-2

B
0

A 0 C
0

B

D

E

0

+10

A
0

F
0

C
0

Double Rotation

11

AVL Tree Facts
• A tree that is AVL except at root, where root

balance factor equals ±2 can be rebalanced
with at most 2 rotations

• add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance
factor changes and (single or double) rotations
to restore AVL structure

• An AVL tree on n nodes has height O(log n)

12

AVL Trees: One of Many

There are many strategies for tree balancing to
preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height

13

A Red-Black Tree
(from Wikipedia.org)

14

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves

have the same number of black nodes
• This is called the black height of the node

15

A Red-Black Tree
(from Wikipedia.org)

16

Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes
has height satisfying	ℎ ≤ 2 log(𝑛 + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children

17

Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has
height satisfying	ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree has all children with degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 	2,J , so log) 𝑛 + 1 ≥ 	ℎK ≥ ,
)

• Thus 2 log) 𝑛 + 1 ≥ 	ℎ
Corollary: R-B trees with n nodes have height O(log n)

18

Red-Black Tree Insertion

19

Red-Black Tree Insertion

20

Red-Black Tree Insertion

21

Red-Black Tree Insertion

22

Red-Black Tree Insertion

23

Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove,
contains, get) on an n-node splay tree take at
most O(m log n) time.

24

Splay Tree Rotations
Right Zig Rotation (left version too)

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)

25

Splay Tree Iterator
• Even contains method changes splay tree shape

• This breaks the standard in-order iterator!
• Because the stack is based on the shape of the tree

• Solution: Remove the stack from the iterator
• Observation: Given location of current node (node

whose value is next to be returned), we can compute
it’s (in-order)successor in next()
• It’s either left-most leaf of right child of current, or
• It’s closest ”left-ancestor” of current

• Ancestor whose left child is also an ancestor of current

• Also, reset must “re-find” root
• Idea: Hold a single “reference” node, use it to find root

