
CSCI 136
Data Structures &

Advanced Programming

Lecture 24
Fall 2017

Instructor: Bills

2

Administrative Details

• Lab 9 today!
• You can work with a partner
• Bring a design to lab

• You can deviate from our plan but you should
try to take advantage of
• Abstract base classes/inheritance
• Data structures you’ve learned

2

3

Last Time

• Heapsort
• Skew Heaps
• Binary search trees (Ch 14)
• Overview
• Definition
• Some Applications

4

Today’s Outline

• Binary search trees (Ch 14)
• The locate method
• Further Implementation
• Tree balancing to maintain small height
• Partial taxonomy of balanced tree species

5

Binary Search Trees

• Binary search trees maintain a total ordering
among elements (assumes comparability)

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs

6

BST Observations

• The same data can be represented by many
BST shapes

• Searching for a value in a BST takes time
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at
least one child (a constraint!)

• Removing from a BST can involve any node

7

BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)
• Runtime of above operations?

• All O(h) – where h is the tree height
• iterator()

• This will provide an in-order traversal

8

BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST
• Comparator<E> ordering: for comparing nodes

• Note: E must implement Comparable

• Two constructors: One takes a Comparator

9

BST Implementation: locate

• Several methods search the tree
• add, remove, contains

• We factor out common code: locate method
• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> n in the subtree with

root node such that either
• n has its value equal to v, or
• v is not in this subtree and n is the node whose child

v should be

• How would we implement locate()?

10

BST Implementation: locate

BinaryTree locate(BinaryTree root, E value)
if root’s value equals value return root
child ç child of root that should hold value
if child is emptry tree, return root

// value not in subtree based at root
else //keep looking

return locate(child, value)

11

BST Implementation: locate

• What about this line?
child ç child of root that should hold value

• If the tree can have multiple nodes with
same value, then we need to be careful

• Convention: During add operation, only
move to right subtree if value to be added is
greater than value at node

• We’ll look at add later
• Let’s look at locate now....

12

The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else

return locate(child, value);
}

13

Other core BST methods

• locate(v) returns either a node containing v or a
node where v can be added as a child

• locate() is used by
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...

14

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}

15

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight(newNode);

else
insertLocation.setLeft(newNode);

}
count++;

}

Problem: If repeated values are allowed, left subtree might
not be empty when setLeft is called

16

Add: Repeated Nodes

17

Add Duplicate to Predecessor

• If insertLocation has a left child then
• Find insertLocation’s predecessor
• Add repeated node as right child of predecessor
• Predecessor will be in insertLocation’s left sub-tree

• Do you believe me?

18

Corrected Version: add(E value)
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode);
else

if (insertLocation.left().isEmpty())
insertLocation.setLeft(newNode);

else
// if value is in tree, we insert just before
predecessor(insertLocation).setRight(newNode);

}
count++;

19

How to Find Predecessor

20

Predecessor

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), ”Root has predecessor");
Assert.pre(!root.left().isEmpty(),"Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}

21

Removal

• Removing the root is a (not so) special case
• Let’s figure that out first
• If we can remove the root, we can remove any

element in a BST in the same way
• Do you believe me?

• We need to implement:
• public E remove(E item)
• protected BT removeTop(BT top)

22

Case 1: No left binary tree

x

x.right x.right

23

Case 2: No right binary tree

x

x.left x.left

24

Case 3: Left has no right subtree

x.left

a.root

A

x

x.right

B

x.left

a.root

A

x.right

B

25

Case 4: General Case (HARD!)

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be > root

• Strategy: replace the root with the largest
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s
left subtree!

26

Case 4: General Case (HARD!)

1

2

A

x

4

B

Replace root with predecessor(root),
then patch up the remaining tree

1

A

2

4

B

27

Case 4: General Case (HARD!)

Replace root with predecessor(root),
then patch up the remaining tree

1
2

A

x

4

D

B
C

3

1
2

A

3

4

D

B C

28

RemoveTop(topNode)

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other one
If left has no right child

make right the right child of left then return left
Otherwise find largest node C in left

// C is the right child of its own parent P
// C is the predecessor of right (ignoring topNode)

Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees

29

But What About Height?

• Can we design a binary search tree that is
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

30

A

B

C

+2

+1

0

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree. A node
with balance factor 1, 0, or -1 is considered balanced.

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

31

A

B

C

+2

+1

0
A

B

C

0

00

Single Rotation

Unbalanced trees can be rotated to achieve balance.

32

Single Right Rotation

33

B

E

F

-2

01

A D
-10

C 0

D

E

F

-2

0-2

B
0

A 0 C
0

B

D

E

0

+10

A
0

F
0

C
0

Double Rotation

34

AVL Tree Facts

• A tree that is AVL except at root, where root
balance factor equals ±2 can be rebalanced
with at most 2 rotations

• add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance
factor changes and (single or double) rotations
to restore AVL structure

35

AVL Trees: One of Many

• There are many strategies for tree balancing to
preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations

• Randomized trees: O(log n) expected height

