CSCI 136 Data Structures \& Advanced Programming

Lecture 23
Fall 2017
Instructor: Bills

Administrative Details

- Lab 9: Simulations
- You will simulate two queuing strategies
- You can work with a partner
- Time spent on lab before Wed. is time well-spent!

Last Time

- Finishing up with heaps
- More on implementation
- "Heapifying" constructor for VectorHeap
- Alternate heapify approach

Today

- Finishing up with heaps
- HeapSort
- Alternative Heap Structures
- Binary Search Tree: A New Ordered Structure
- Definitions
- Implementation

Heapifying A Vector (or array)

- Method I: Top-Down
- Assume V[0...k] satisfies the heap property
- Now call percolate on item in location k+l
- Then $\mathrm{V}[0 . . \mathrm{k}+\mathrm{I}]$ satisfies the heap property
- Method II: Bottom-up
- Assume V[k..n] satisfies the heap property
- Now call pushDown on item in location k-I
- Then V[k-l..n] satisfies heap property
- Check out the demos at visualgo.net

Top-Down vs Bottom-Up

- Top-down heapify: elements at depth d may be swapped d times: Total \# of swaps is at most
$\sum_{d=1}^{h} d 2^{d}=(h-1) 2^{h+1}=(\log n-1) 2 n+2$
- This is $O(n \log n)$
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: $\mathrm{O}(\log n)$ swaps per element

Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth d may be swapped h-d times: Total \# of swaps is at most $\sum_{d=1}^{h}$

$$
(h-d) 2^{d}=2^{h+1}-h-2=2 n-\log n+2
$$

- This is $O(n)$--- beats top-down!
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times SO COOL!!!

Some Sums

$$
\begin{aligned}
& \sum_{d=0}^{d=k} 2^{d}=2^{k+1}-1 \\
& \sum_{d=0}^{d=k} r^{d}=\left(r^{k+1}-1\right) /(r-1)
\end{aligned}
$$

All of these can be proven by (weak) induction.

Try these to hone your skills
$\sum_{d=1}^{d=k} d * 2^{d}=(k-1) * 2^{k+1}+2$
$\sum_{d=1}^{d=k}(k-d) * 2^{d}=2^{k+1}-k-2$
The second sum is called a geometric series. It works for any $\mathrm{r} \neq 0$

HeapSort

- Heaps yield another $O(n \log n)$ sort method
- To HeapSort a Vector "in place"
- Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
- Now repeatedly remove elements to fill in Vector from tail to head
- For(int $i=v . \operatorname{size}()-I ; i>0 ; i--)$
- RemoveMin from $v[0 . . i] / / v[i]$ is now not in heap
- Put removed value in location $v[i]$

Heap Sort vs QuickSort

Why Heapsort?

- Heapsort is slower than Quicksort in general
- Any benefits to heapsort?
- Guaranteed O(n log n) runtime
- Works well on mostly sorted data, unlike quicksort
- Good for incremental sorting

More on Heaps

- Set-up: We want to build a large heap. We have several processors available.
- We'd like to use them to build smaller heaps and then merge them together
- Suppose we can share the array holding the elements among the processors.
- How long to merge two heaps?
- How complicated is it?
- What if we use BinaryTrees for our heaps?

Mergeable Heaps

- We now want to support the additional destructive operation merge(heapl, heap2)
- Basic idea: heap with larger root somehow points into heap with smaller root
- Challenges
- Points how? Where?
- How much reheapifying is needed
- How deep do trees get after many merges?

Skew Heap

- Don't force heaps to be complete BTs?
- Develop recursive merge algorithm that keeps tree shallow over time
- Theorem: Any set of m SkewHeap operations can be performed in $O(m \log n)$ time, where n is the total number of items in the SkewHeaps
- Let's sketch out merge operation....

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T) if either S or Tis empty, return the other if T.minValue < S.minValue
swap Sand T (S now has minValue)
if S has no left subtree, T becomes its left subtree else
let temp point to right subtree of S left subtree of S becomes right subtree of S merge(temp, T) becomes left subtree of S return S

Tree Summary

- Trees
- Express hierarchical relationships
- Level ordering captures the relationship
- i.e., ancestry, game boards, decisions, etc.
- Heap
- Partially ordered tree based on item priority
- Node invariants: parent has higher priority than each child
- Provides efficient PriorityQueue implementation

Improving on OrderedVector

- The OrderedVector class provides $O(\log n)$ time searching for a group of n comparable objects
- add() and remove(), though, take $O(n)$ time in the worst case---and on average!
- Can we improve on those running times without sacrificing the $O(\log n)$ search time?
- Let's find out....

Binary Trees and Orders

- Binary trees impose multiple orderings on their elements (pre-/in-/post-/level-orders)
- In particular, in-order traversal suggests a natural way to hold comparable items
- For each node v in tree
- All values in left subtree of v are $\leq v$
- All values in right subtree of v are $\geq v$
- This leads us to...

Binary Search Trees

- Binary search trees maintain a total ordering among elements
- Definition: A BST T is either:
- Empty
- Has root r with subtrees T_{L} and T_{R} such that
- All nodes in T_{L} have smaller value than r
- All nodes in T_{R} have larger value than r
- T_{L} and T_{R} are also BSTs
- Examples

BST Observations

- The same data can be represented by many BST shapes
- Searching for a value in a BST takes time proportional to the height of the tree
- Reminder: trees have height, nodes have depth
- Additions to a BST happen at nodes missing at least one child (a constraint!)
- Removing from a BST can involve any node

BST Operations

- BSTs will implement the OrderedStructure Interface
- add(E item)
- contains(E item)
- get(E item)
- remove(E item)
- iterator()
- This will provide an in-order traversal
- Runtime of add, contains, get, remove: O (height)
- Goal: Keep the height to $O(\log n)$
- Duane's BinarySearchTree class doesn't achieve this...
- But his RedBlackSearchTree does!

Application: Dictionary

- Create a BST of ComparableAssociations
- Order BST by key
- Two objects are equal if keys are equal
- Example: Symbol tables (PostScript lab) are Dictionaries
- But would only use a BST if the set of possible symbols was very large

Application: Tree Sort

- Can we sort data using a BST?
- Yes!
- Runtime?
- To build a tree with n elements, we do n insertions: $O(n * h)$, where h is the maximum height attained by the tree
- In order traversal: $\mathrm{O}(\mathrm{n})$
- Total runtime: $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~h}\right)$

