CSCI 136
Data Structures &
Advanced Programming

Lecture 24
Fall 2016

Instructor: Bill Lenhart

Administrative Details

e Lab 9: Simulations
* You will simulate two queuing strategies
* You can work with a partner

e Time spent on lab before Wed. is time well-spent!

Last Time

* Finishing up with heaps
* More on implementation
* “Heapifying” constructor for VectorHeap
e Alternate heapify approach

Today

* Finishing up with heaps
e Review “Heapify” (rushed at end of last lecture)
e HeapSort
e Alternative Heap Structures

e Binary Search Tree: A New Ordered Structure
* Definitions
* Implementation

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V

* Method I: Top-Down
e Assume V[0...k] satisfies the heap property

* Now call percolateUp on item in location k+1

e Then V[0..k+1] satisfies the heap property

Grow heap one element at a time

Practice Top-Down

Input:
e int af6] = {7,5,9,1,2,5,4}

for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

Result: a is a valid heap!
ea = [1]|2]|4|7|5|9]|5]

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V

* Method ll: Bottom-up
e Assume VJk..n] satisfies the heap property

* Now call pushDown on item in location k-1

* Then V[k-1..n] satisfies heap property

Grow heap one element at a time

Practice Bottom-Up

Input:
e int af6] = {7,5,9,1,2,5,4}

for (int 1 = a.length-1; 1 > 0; 1++)
pushDownRoot (a, 1i);

Result: a is a valid heap!
ea = [1]|2]|4|5|7|5]|9]

Top-Down vs Bottom-Up

e Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is

h
2 d2% = (h—1)2"1 = (logn — 1)2n + 2
d=1

* This is O(n log n)

e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them

might have to move to root: O(log n) swaps
per element

(recall: h =log n)

Top-Down vs Bottom-Up

e Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is

h
z (h—d)2¢ = 20*1 — h— 2 = 2n —logn + 2
d=1

* This is O(n) --- beats top-down!

e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO CcooL!!

Some Sums (for your toolbox)

d=k

d k1 All of these can be
d=0 proven by (weak)
induction.
- d k+1
Ed:() = =D/ (r=1) Try these to hone
your sKills

d=k
E d* 20' _ (k _ 1) % 2k+1 +72 The second sum is
d=1 called a geometric
series. It works for

any r#0

Edd::l(k—d)*Zd:Zk”—k—z

HeapSort

e The “niftiest” sort so far

e Strategy:

e Make a max-heap: array[0...n]
e array[0] is largest value

e array[n] is rightmost leaf

e Take the largest value (array[0]) and swap it with
the rightmost leaf (array[n])

e Call pushDownRoot(0) on array[0...n-1]

* Now our heap is one element smaller, but largest
element is at end of array.

* Repeat until array is sorted

HeapSort

* Another O(n log n) sort method
* Heapsort is not stable

* The relative ordering of elements is not preserved
in the final sort

* Why!

— There are multiple valid heaps given the same data

e Heapsort can be done in-place
* No extra memory required!!!

e Great for resource-constrained environments

HeapSort

HeapSort pseudocode for unsorted vector V:

e Perform bottom-up heapify on the reverse
ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

* Repeatedly remove elements to fill in Vector from
tail to head

 for(inti = v.size() — I;i>0; i--)
— removeMin from v[0..i] // v[i] is now not in heap

— Put removed value in location v[i] // v[0..i-1] is a valid heap
// v[i..n] is sorted

Time (ms)

2500

2000

1500

1000

500

Heap Sort vs QuickSort

~0— Heap Sort
—ll— Quick Sort

200000 400000 600000 800000 1000000
Size

1200000

Why Heapsort!

Heapsort is slower than Quicksort in general

Any benefits to heapsort?

e Guaranteed O(n log n) runtime

Works well on mostly sorted data, unlike
quicksort

Good for incremental sorting

More on Heaps

Set-up: We want to build a large heap. We
have several processors available.

We'd like to use them to build smaller heaps
and then merge them together

Suppose we can share the array holding the
elements among the processors.

How long to merge two heaps!

How complicated is it?

\'A%

nat if we use BinaryTrees for our heaps!

Mergeable Heaps

* We now want to support the additional
destructive operation merge(heapl, heap2)

* Basic idea: heap with larger root somehow
points into heap with smaller root

e Challenges
* Points how! Where!
* How much reheapifying is needed

 How deep do trees get after many merges?

Skew Heap

Don’t force heaps to be complete BTs!?

Develop recursive merge algorithm that keeps
tree shallow over time

Theorem: Any set of m SkewHeap operations
can be performed in O(m log n) time, where n
is the total number of items in the SkewHeaps

Let’s sketch out merge operation....

Skew Heap: Merge Pseudocode

Skewlleap merge(Skewlteap S, SkewHeap T)
if either S or 1'is empty, return the other Case 1
if 1.minValue <S.minValue
swapSand T (S now has minValue)
IS has no left subtree, T'becomes its left subtree
oo Case 2
let temp point to right subtree of S
left subtree of S becomes right subtree of S

merge(temp, 1) becomes lefi Jublre% of § \
ase

return.5 (recurse)

Tree Summary

* Trees
* Express hierarchical relationships

* Level ordering captures the relationship

* i.e., ancestry, game boards, decisions, etc.
* Heap
* Partially ordered tree based on item priority

* Node invariants: parent has higher priority than
each child

* Provides efficient PriorityQueue implementation

