
CSCI 136
Data Structures &

Advanced Programming

Lecture 24
Fall 2016

Instructor: Bill Lenhart

Administrative Details

• Lab 9: Simulations
• You will simulate two queuing strategies
• You can work with a partner
• Time spent on lab before Wed. is time well-spent!

2

Last Time

• Finishing up with heaps
• More on implementation
• “Heapifying” constructor for VectorHeap
• Alternate heapify approach

3

Today

• Finishing up with heaps
• Review “Heapify” (rushed at end of last lecture)
• HeapSort
• Alternative Heap Structures

• Binary Search Tree: A New Ordered Structure
• Definitions
• Implementation

4

Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V
• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Now call percolateUp on item in location k+1
• Then V[0..k+1] satisfies the heap property

Grow heap one element at a time

Practice Top-Down

Input:
• int a[6] = {7,5,9,1,2,5,4}

0 1 2 3 4 5 6

for (int i = 0; i < a.length; i++)
percolateUp(a, i);

Result: a is a valid heap!
• a = [1|2|4|7|5|9|5]

0 1 2 3 4 5 6

Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V
• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property
• Now call pushDown on item in location k-1
• Then V[k-1..n] satisfies heap property

Grow heap one element at a time

Practice Bottom-Up

Input:
• int a[6] = {7,5,9,1,2,5,4}

0 1 2 3 4 5 6

for (int i = a.length-1; i > 0; i++)
pushDownRoot(a, i);

Result: a is a valid heap!
• a = [1|2|4|5|7|5|9]

0 1 2 3 4 5 6

Top-Down vs Bottom-Up

• Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is

! 𝑑2$
%

$&'
= ℎ − 1 2%,' = log 𝑛 − 1 2𝑛 + 2

• This is O(n log n)
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
might have to move to root: O(log n) swaps
per element

(recall: h = log n)

Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is

! (ℎ − 𝑑)2$
%

$&'
= 2%,' − ℎ − 2 = 2𝑛 − log 𝑛 + 2

• This is O(n) --- beats top-down!
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!!

Some Sums (for your toolbox)

2dd=0
d=k

∑ = 2k+1 −1

d *2dd=1
d=k

∑ = (k −1)*2k+1 + 2

rdd=0
d=k

∑ = (rk+1 −1) / (r −1)

(k − d)*2dd=1
d=k

∑ = 2k+1 − k − 2

All of these can be
proven by (weak)
induction.

Try these to hone
your skills

The second sum is
called a geometric
series. It works for
any r≠0

HeapSort
• The “niftiest” sort so far
• Strategy:
• Make a max-heap: array[0…n]

• array[0] is largest value
• array[n] is rightmost leaf

• Take the largest value (array[0]) and swap it with
the rightmost leaf (array[n])

• Call pushDownRoot(0) on array[0…n-1]
• Now our heap is one element smaller, but largest

element is at end of array.

• Repeat until array is sorted

HeapSort

• Another O(n log n) sort method
• Heapsort is not stable
• The relative ordering of elements is not preserved

in the final sort
• Why?

– There are multiple valid heaps given the same data

• Heapsort can be done in-place
• No extra memory required!!!
• Great for resource-constrained environments

HeapSort

• HeapSort pseudocode for unsorted vector V:
• Perform bottom-up heapify on the reverse

ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

• Repeatedly remove elements to fill in Vector from
tail to head
• for(int i = v.size() – 1; i > 0; i--)

– removeMin from v[0..i] // v[i] is now not in heap
– Put removed value in location v[i] // v[0..i-1] is a valid heap

// v[i..n] is sorted

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heap Sort vs QuickSort

Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
• Guaranteed O(n log n) runtime

• Works well on mostly sorted data, unlike
quicksort

• Good for incremental sorting

More on Heaps

• Set-up: We want to build a large heap. We
have several processors available.

• We’d like to use them to build smaller heaps
and then merge them together

• Suppose we can share the array holding the
elements among the processors.
• How long to merge two heaps?
• How complicated is it?

• What if we use BinaryTrees for our heaps?

Mergeable Heaps

• We now want to support the additional
destructive operation merge(heap1, heap2)

• Basic idea: heap with larger root somehow
points into heap with smaller root

• Challenges
• Points how? Where?

• How much reheapifying is needed
• How deep do trees get after many merges?

Skew Heap

• Don’t force heaps to be complete BTs?
• Develop recursive merge algorithm that keeps

tree shallow over time
• Theorem: Any set of m SkewHeap operations

can be performed in O(m log n) time, where n
is the total number of items in the SkewHeaps

• Let’s sketch out merge operation....

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)
if either S or T is empty, return the other
if T.minValue < S.minValue

swap S and T (S now has minValue)
if S has no left subtree, T becomes its left subtree
else

let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, T) becomes left subtree of S

return S

Case 1

Case 2

Case 3
(recurse)

Tree Summary

• Trees
• Express hierarchical relationships
• Level ordering captures the relationship

• i.e., ancestry, game boards, decisions, etc.

• Heap
• Partially ordered tree based on item priority
• Node invariants: parent has higher priority than

each child
• Provides efficient PriorityQueue implementation

