CSCI I36
 Data Structures \&
 Advanced Programming

Lecture 22
Fall 2017
Instructor: Bills

Announcement

Power outage (3-5am)

We'll be shutting down systems at IOpm tonight

Rebooting at 9am tomorrow

Last Time

- Wrap up Binary Tree Iterators
- Breadth-First and Depth-First Search
- Array Representations of (Binary) Trees
- Application: Huffman Encoding

Today

Improving Huffman's Algorithm

- Priority Queues \& Heaps
- A "somewhat-ordered" data structure
- Conceptual structure
- Efficient implementations

Huffinan codes

- Example
- AN_ANTARCTIC_PENGUIN
- Compute letter frequencies

- Key Idea: Use fewer bits for most common letters

A	C	E	G		N	P	R	C	U	
3	2	1	1	2	4	1	1	2	1	2
110	111	1011	1000	000	001	1001	1010	0101	0100	011

- Uses 67 bits to encode entire string

The Encoding Tree

$$
\text { Left }=0 ; \text { Right }=1
$$

Huffman Encoding Algorithm

Input: symbols of alphabet with frequencies

- Huffman encode as follows
- Create a single-node tree for each symbol: key is frequency; weight is letter
- while there is more than one tree
- Find two trees TI and T2 with lowest weights
- Merge them into new tree T with: weight $=$ TI.weight + T2.weigth
- Theorem: The tree computed by Huffman is an optimal encoding for given frequencies

Demo

- To run the Huffman code demo found on course webpage:
java -jar huffman.jar

The Encoding Tree (With Weights)

$$
\text { Left }=0 ; \text { Right }=1
$$

*Each node's value is the sum of the frequencies of all its children

Implementing the Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
- Removing two smallest frequency trees is fast
- Insert merged tree into correct sorted location in Vector
- Running Time:
- $O(n \log n)$ for initial sorting
- $O\left(n^{2}\right)$ for while loop
- Can we do better...?

What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
- $\operatorname{add}(E$ item); // add an item
- E removeMin(); // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in $O(\log n)$ time, the Huffman while loop would take $O(n \log n)$ time instead of $\mathrm{O}\left(\mathrm{n}^{2}\right)$!
- We've seen this situation before....

Priority Oueues

Packet Sources May Be Ordered by Sender

```
sysnet.cs.williams.edu
bull.cs.williams.edu
priority = 1 (best)
    2
yahoo.com
10
spammer.com
    100 (worst)
```


Priority Queues

- Priority queues are also used for:
- Scheduling processes in an operating system
- Priority is function of time lost + process priority
- Order services on server
- Backup is low priority, so don't do when high priority tasks need to happen
- Scheduling future events in a simulation (lab next week!)
- Medical waiting room
- Huffman codes - order by tree size/weight
- A variety of graph/network algorithms
- To roughly rank choices that are generated out of order

Priority Queues

- Name is misleading: They are not FIFO
- Always dequeue object with highest priority (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values

An Apology

- On behalf of computer scientists everywhere, l'd like to apologize for the confusion that inevitably results from the fact that

Higher Priority \leftrightarrow Lower Rank

- The PQ removes the lowest ranked value in an ordering: that is, the highest priority value!

We're sorry!

PQ Interface

```
public interface PriorityQueue<E extends Comparable<E>> {
    public E getFirst(); // peeks at minimum element
    public E remove(); // removes minimum element
    public void add(E value); // adds an element
    public boolean isEmpty();
    public int size();
    public void clear();
}
```


Notes on PQ Interface

- Unlike previous structures, we do not extend any other interfaces
- Many reasons: For example, it's not clear that there's an obvious iteration order
- PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
- Could be made to use Comparators instead...

Implementing PQs

- Queue?
- Wouldn't work so well because we can't insert and remove in the "right" way (i.e., keeping things ordered)
- OrderedVector?
- Keep ordered vector of objects
- $O(n)$ to add/remove from vector
- Details in book...
- Can we do better than $\mathrm{O}(\mathrm{n})$?
- Heap!
- Partially ordered binary tree

Heap

- A heap is a special type of tree
- Root holds smallest (highest priority) value
- Subtrees are also heaps (this is important!)
- Values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
- Invariant for nodes: For each child of each node
- node.value() <= child.value() // if child exists
- Several valid heaps for same data set (no unique representation)

Inserting into a PQ

- Add new value as a leaf
- "Percolate" it up the tree
- while (value < parent's value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
- Finding a place to add new node
- Finding parent
- Tree height

Removing From a PQ

- Get value from root node (highest priority)
- Find a leaf, delete it, put its data in the root
- "Push" data down through the tree
- while (data.value > value of (at least) one child)
- Swap data with data of smaller child
- This operation preserves the heap property
- Efficiency depends upon speed of
- Finding a leaf
- Finding locations of children
- Height of tree

Implementing Heaps

- VectorHeap
- Use conceptual array representation of BT (ArrayTree)
- But use extensible Vector instead of array (makes adding elements easier)
- Note:
- Root of tree is location 0 of Vector
- Children of node in location i are in locations $2 i+1$ (left) and $2 \mathrm{i}+2$ (right)
- Parent of node i is in location ($i-1$)/2
- Remember: dividing Integers truncates the result

Implementing Heaps

- Strategy: tree modifications that always preserve tree completeness, but may violate heap property. Then fix.
- Add/remove never add gaps to array
- We always add in next available array slot (left-most available spot in binary tree)
- We always remove using "final" leaf
- Heap Invariant becomes
- data[i] <= data[2i+I]; data[i]<=data[2i+2] (or kids might be null)
- When elements are added and removed, do small amount of work to "re-heapify"
- How small? Note: finding a node's child or parent takes constant time, as does finding "final" leaf or next slot for adding
- Since this heap corresponds to a full binary tree, the depth of the tree is $O(\log n)$, so percolate/pushDown takes $O(\log n)$ time!

VectorHeap Summary

- Let's look at VectorHeap code....
- Add/remove are both $O(\log n)$
- Data is not completely sorted
- "Partial" order is maintained: all root-to-leaf paths
- Note: VectorHeap(Vector<E> v)
- Takes an unordered Vector and uses it to construct a heap
- How?

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to "heapify" \vee

- Method I: Top-Down
- Assume V[0...k] satisfies the heap property
- Now call percolateUp on item in location $\mathrm{k}+\mathrm{I}$
- Then $\mathrm{V}[0 . . \mathrm{k}+\mathrm{I}]$ satisfies the heap property

Grow heap one element at a time

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to "heapify" V

- Method II: Bottom-up
- Assume V[k..n] satisfies the heap property
- Now call pushDown on item in location k-I
- Then V[k-I..n] satisfies heap property

Top-Down vs Bottom-Up

- Top-down heapify: elements at depth d may be swapped d times: Total \# of swaps is
$\sum_{d=1}^{h} d 2^{d}=(h-1) 2^{h+1}=(\log n-1) 2 n+2$
- This is $O(n \log n)$
(recall: $\mathrm{h}=\log \mathrm{n}$)
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: $\mathrm{O}(\log n)$ swaps per element

Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth d may be swapped h-d times: Total \# of swaps is
Σ

$$
(h-d) 2^{d}=2^{h+1}-h-2=2 n-\log n+2
$$

- This is $O(n)$--- beats top-down!
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times SO COOL!!!

Some Sums (for your toolbox)

$$
\begin{aligned}
& \sum_{d=0}^{d=k} 2^{d}=2^{k+1}-1 \\
& \sum_{d=0}^{d=k} r^{d}=\left(r^{k+1}-1\right) /(r-1)
\end{aligned}
$$

All of these can be proven by (weak) induction.

Try these to hone your skills
$\sum_{d=1}^{d=k} d * 2^{d}=(k-1) * 2^{k+1}+2$
$\sum_{d=1}^{d=k}(k-d) * 2^{d}=2^{k+1}-k-2$

The second sum is called a geometric series. It works for any $\mathrm{r} \neq 0$

