CSCI 136 Data Structures & Advanced Programming

Lecture 22

Fall 2017

Instructor: Bills

Announcement

Power outage (3-5am)

We'll be shutting down systems at 10pm tonight

Rebooting at 9am tomorrow

Last Time

- Wrap up Binary Tree Iterators
- Breadth-First and Depth-First Search
- Array Representations of (Binary) Trees
- Application: Huffman Encoding

Today

Improving Huffman's Algorithm

- Priority Queues & Heaps
 - A "somewhat-ordered" data structure
 - Conceptual structure
 - Efficient implementations

Huffman Codes

- Example
 - AN_ANTARCTIC_PENGUIN
 - Compute letter frequencies

A	С	E	G	I	N	P	R	Т	U	_
3	2	1	ı	2	4	I	I	2	ı	2

Key Idea: Use fewer bits for most common letters

A	C	E	G		N	P	R	Т	U	_
3	2	I	I	2	4	I	I	2	I	2
110	111	1011	1000	000	001	1001	1010	0101	0100	011

Uses 67 bits to encode entire string

The Encoding Tree

Left = 0; Right = 1

Huffman Encoding Algorithm

Input: symbols of alphabet with frequencies

- Huffman encode as follows
 - Create a single-node tree for each symbol: key is frequency; weight is letter
 - while there is more than one tree
 - Find two trees TI and T2 with lowest weights
 - Merge them into new tree T with:
 weight = T1.weight+ T2.weigth
- Theorem: The tree computed by Huffman is an optimal encoding for given frequencies

Demo

 To run the Huffman code demo found on course webpage:

```
java -jar huffman.jar
```

The Encoding Tree (With Weights)

Left = 0; Right = 1

^{*}Each node's value is the sum of the frequencies of all its children

Implementing the Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
 - Removing two smallest frequency trees is fast
- Insert merged tree into correct sorted location in Vector
- Running Time:
 - O(n log n) for initial sorting
 - O(n²) for while loop
- Can we do better…?

What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
 - add(E item); // add an item
 - E removeMin(); // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in O(log n) time, the Huffman while loop would take O(n log n) time instead of O(n²)!
- We've seen this situation before....

Priority Queues

Packet Sources May Be Ordered by Sender

```
sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10
spammer.com 100 (worst)
```

Priority Queues

- Priority queues are also used for:
 - Scheduling processes in an operating system
 - Priority is function of time lost + process priority
 - Order services on server
 - Backup is low priority, so don't do when high priority tasks need to happen
 - Scheduling future events in a simulation (lab next week!)
 - Medical waiting room
 - Huffman codes order by tree size/weight
 - A variety of graph/network algorithms
 - To roughly rank choices that are generated out of order

Priority Queues

- Name is misleading: They are not FIFO
- Always dequeue object with highest priority (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values

An Apology

On behalf of computer scientists everywhere,
I'd like to apologize for the confusion that
inevitably results from the fact that
Higher Priority ←→Lower Rank

 The PQ removes the lowest ranked value in an ordering: that is, the highest priority value!

We're sorry!

PQ Interface

```
public interface PriorityQueue<E extends Comparable<E>>> {
   public E getFirst(); // peeks at minimum element
   public E remove(); // removes minimum element
   public void add(E value); // adds an element
   public boolean isEmpty();
   public int size();
   public void clear();
}
```

Notes on PQ Interface

- Unlike previous structures, we do not extend any other interfaces
 - Many reasons: For example, it's not clear that there's an obvious iteration order
- PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
 - Could be made to use Comparators instead…

Implementing PQs

- Queue?
 - Wouldn't work so well because we can't insert and remove in the "right" way (i.e., keeping things ordered)
- OrderedVector?
 - Keep ordered vector of objects
 - O(n) to add/remove from vector
 - Details in book…
 - Can we do better than O(n)?
- Heap!
 - Partially ordered binary tree

Heap

- A heap is a special type of tree
 - Root holds smallest (highest priority) value
 - Subtrees are also heaps (this is important!)
- Values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
- Invariant for nodes: For each child of each node
 - node.value() <= child.value() // if child exists
- Several valid heaps for same data set (no unique representation)

Inserting into a PQ

- Add new value as a leaf
- "Percolate" it up the tree
 - while (value < parent's value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
 - Finding a place to add new node
 - Finding parent
 - Tree height

Removing From a PQ

- Get value from root node (highest priority)
- Find a leaf, delete it, put its data in the root
- "Push" data down through the tree
 - while (data.value > value of (at least) one child)
 - Swap data with data of smaller child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Height of tree

Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
 - Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 - Parent of node i is in location (i-1)/2
 - Remember: dividing Integers truncates the result

Implementing Heaps

- Strategy: tree modifications that always preserve tree completeness, but may violate heap property. Then fix.
 - Add/remove never add gaps to array
 - We always add in next available array slot (left-most available spot in binary tree)
 - We always remove using "final" leaf
 - Heap Invariant becomes
 - data[i] <= data[2i+1]; data[i] <= data[2i+2] (or kids might be null)
 - When elements are added and removed, do small amount of work to "re-heapify"
 - How small? Note: finding a node's child or parent takes constant time, as does finding "final" leaf or next slot for adding
 - Since this heap corresponds to a full binary tree, the depth of the tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

Let's look at VectorHeap code....

- Add/remove are both O(log n)
- Data is not completely sorted
 - "Partial" order is maintained: all root-to-leaf paths
- Note: VectorHeap(Vector<E> v)
 - Takes an unordered Vector and uses it to construct a heap
 - How?

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to "heapify" V

- Method I: Top-Down
 - Assume V[0...k] satisfies the heap property
 - Now call percolateUp on item in location k+1
 - Then V[0..k+1] satisfies the heap property

Grow heap one element at a time

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to "heapify" V

- Method II: Bottom-up
 - Assume V[k..n] satisfies the heap property
 - Now call pushDown on item in location k-I
 - Then V[k-1..n] satisfies heap property

Grow heap one element at a time

Top-Down vs Bottom-Up

 Top-down heapify: elements at depth d may be swapped d times: Total # of swaps is

$$\sum_{d=1}^{h} d2^d = (h-1)2^{h+1} = (\log n - 1)2n + 2$$
(recall: h = log n)

- This is O(n log n)
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: O(log n) swaps per element

Top-Down vs Bottom-Up

 Bottom-up heapify: elements at depth d may be swapped h-d times: Total # of swaps is

$$\sum_{d=1}^{h} (h-d)2^{d} = 2^{h+1} - h - 2 = 2n - \log n + 2$$

- This is O(n) --- beats top-down!
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times

Some Sums (for your toolbox)

$$\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1$$

$$\sum_{d=0}^{d=k} r^d = (r^{k+1} - 1)/(r - 1)$$

$$\sum_{d=1}^{d=k} d * 2^d = (k-1) * 2^{k+1} + 2$$

$$\sum_{d=1}^{d=k} (k-d) * 2^{d} = 2^{k+1} - k - 2$$

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any r≠0