
CSCI 136
Data Structures &

Advanced Programming

Lecture 21
Fall 2017

Instructor: Bills

Administrative Details

• Lab 8 today!
• No partners this week
• Review before lab; come to lab with design doc

• Read over the supplied resources!

2

Last Time

• Trees with more than 2 children
• Representations
• Application: Lab 8: Hex-a-pawn!

• Binary Trees
• Traversals

• As methods taking a BinaryTree parameter
• With Iterators

3

Today

• Wrap up Binary Tree Iterators
• Breadth-First and Depth-First Search
• Array Representations of (Binary) Trees
• Application: Huffman Encoding

4

Lexicon Lab Tips

Tasks (in order of implementation!):
• Review all lab materials (including .java files!)
• Implement LexiconNode
• Add a single method, then test it: add main()

• Implement LexiconTrie
• Same approach, but can also use Main.java to test

• Implement in an order that allows immediate
testing!

Recall from last class:

• In-order: “left, node, right”

• Pre-order: “node, left, right”

• Post-order: “left, right, node”

• Level-order: visit all nodes at depth i before
depth i+1

Tree Traversals

Stack

Queue

Post-Order Iterator
public BTPostorderIterator(BinaryTree<E> root) {

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}
public void reset() {

todo.clear();
BinaryTree<E> current = root;
while (!current.isEmpty()) {

todo.push(current);
if (!current.left().isEmpty())

current = current.left();
else

current = current.right();
} // Top of stack is now left-most unvisited leaf

}

Post-Order Iterator
public E next() {

BinaryTree<E> current = todo.pop();
E result = current.value();
if (!todo.isEmpty()) {

BinaryTree<E> parent = todo.get();
if (current == parent.left()) {

current = parent.right();
while (!current.isEmpty()) {

todo.push(current);
if (!current.left().isEmpty())

current = current.left();
else current = current.right();

}
}

}
return result;

}

Traversals & Searching

• We can use traversals for searching trees
• How might we search a tree for a value?
• Breadth-First: Explore nodes near the root before

nodes far away (level order traversal)
• Nearest gas station

• Depth-First: Explore nodes deep in the tree first
(post-order traversal)
• Solution to a maze

Loose Ends – Really Big Trees!

• In some situations, the tree we need might be
too big or expensive to build completely
• Or parts of it might not be needed

• Example: Game Trees
• Chess: you wouldn’t build the entire tree, you

would grow portions of it as needed (with some
combination of depth/breadth first searching)

Alternative Tree Representations

• Total # “slots” = 4n
• Since each BinaryTree

maintains a reference to
left, right, parent, value

• 2-4x more overhead than
vector, SLL, array, …

• But trees capture
successor and predecessor
relationships that other
data structures don’t…

Green

Blue Violet

Indigo Red

Orange Yellow

Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2
• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of hrequires 2h+1-1 array slots even if only

O(h) elements

Next up: Huffman Codes

• Computers encode a text as a sequence of bits

Next up: Huffman Codes

• Goal: Encode a text as a sequence of bits
• Normally, use ASCII: 1 character = 8 bits (1 byte)

• Allows for 28 = 256 different characters

• ‘A’ = 01000001, ‘B’ = 01000010
• Space to store “AN_ANTARCTIC_PENGUIN”

• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ANTRCIPEGU_)
• Only need 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

• Can we still do better??

Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

Huffman Codes

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

100 010 1100 1101 011 101 0001 0000 001 1110 1111

• Uses 67 bits to encode entire string

• Can we do better?

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

Features of Good Encoding

• Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

• No internal node has a single child
• Nodes with lower frequency have greater

depth

• All optimal length unambiguous encodings
have these features

Huffman Encoding

• Input: symbols of alphabet with frequencies
• Huffman encode as follows
• Create a single-node tree for each symbol: key is

frequency; value is letter
• while there is more than one tree

• Find two trees T1 and T2 with lowest keys
• Merge them into new tree T with dummy value and

key= T1.key+ T2.key

• Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

How To Implement Huffman

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) re-insertions of merged trees

• Can we do better...?

