CSCI 136
Data Structures &
Advanced Programming

Lecture 21
Fall 2017

Instructor: Bills

Administrative Details

e Lab 8 today!

* No partners this week

* Review before lab; come to lab with design doc

* Read over the supplied resources!

Last Time

* Trees with more than 2 children
e Representations
e Application: Lab 8: Hex-a-pawn!

* Binary Trees

* Traversals
* As methods taking a BinaryTree parameter
* With Iterators

Today

Wrap up Binary Tree Iterators
Breadth-First and Depth-First Search
Array Representations of (Binary) Trees
Application: Huffman Encoding

Lexicon Lab Tips

Tasks (in order of implementation!):
* Review all lab materials (including .java files!)

* Implement LexiconNode
* Add a single method, then test it: add main()

* Implement LexiconTrie

e Same approach, but can also use Main.java to test

* Implement in an order that allows immediate
testing!

Tree Traversals

Recall from last class:
* |n-order: “left, node, right”

e Pre-order: “node, left, right” — Stack

* Post-order: “left, right, node”

—

* Level-order: visit all nodes at depth i before } Queue
depth i+l

Post-Order lterator

public BTPostorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();
¥
public void reset() {
todo.clear();
BinaryTree<E> current = root;
while (!current.isEmpty()) {
todo.push(current);
1f (lcurrent.left().isEmpty())
current = current.left();
else
current = current.right();
} // Top of stack is now left-most unvisited leaf

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
if (!todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
if (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
if (lcurrent.left().isEmpty())
current = current.left();
else current = current.right(Q);

¥
¥

return result;

Traversals & Searching

* We can use traversals for searching trees

* How might we search a tree for a value!

* Breadth-First: Explore nodes near the root before
nodes far away (level order traversal)

* Nearest gas station

* Depth-First: Explore nodes deep in the tree first
(post-order traversal)

e Solution to a maze

Loose Ends — Really Big Trees!

* |In some situations, the tree we need might be
too big or expensive to build completely

* Or parts of it might not be needed
* Example: Game Trees

* Chess: you wouldn’t build the entire tree, you
would grow portions of it as needed (with some
combination of depth/breadth first searching)

Alternative Tree Representations

Green e Total # “slots” = 4n
T * Since each BinaryTree
Blue Violet maintains a reference to

/\ left, right, parent, value

Orange Yellow e 2-4x more overhead than

/\ vector, SLL, array, ...

. * But trees capture
Indigo Red P
successor and predecessor
relationships that other
data structures don ' t...

Array-Based Binary Trees

* Encode structure of tree in array indexes

e Put root at index O

* Where are children of node i?
e Children of node i are at 2i+1| and 2i+2

* Look at example

* Where is parent of node j?
* Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

* Why are Arraylrees good!?

e Save space for links

* No need for additional memory allocated/garbage
collected
* Works well for full or complete trees

e Complete: All levels except last are full and all gaps are at right

e “A complete binary tree of height h is a full binary tree with 0 or
more of the rightmost leaves of level h removed”

 Why bad?
e Could waste a lot of space

* Tree of height of hrequires 2"*'-1 array slots even if only
O(h) elements

Next up: Huffman Codes

 Computers encode a text as a sequence of bits

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] |64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 C
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ! 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 | 105 69 i
10 A [LINE FEED] 42 2A * 74 4A J 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] a4 2c 76 4c L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F 0o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30) 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Vv 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A y 4 122 TA z
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50] 125 7D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _ 127 7F [DEL]

Next up: Huffman Codes

Goal: Encode a text as a sequence of bits
Normally, use ASCII: | character = 8 bits (| byte)

e Allows for 28 = 256 different characters

‘A’ =01000001, ‘B =01000010

Space to store “AN_ANTARCTIC_PENGUIN"
e 20 characters -> 20*8 bits = 160 bits

Is there a better way?
e Only Il symbols are used (ANTRCIPEGU)

* Only need 4 bits per symbol (since 2*>11)!
e 20*4 = 80 bits instead of 160!

e Can we still do better??

Huffman Codes

 Example
e AN_ANTARCTIC PENGUIN
e Compute letter frequencies

* Key ldea: Use fewer bits for most common letters

3 2 I I 2 4 I I 2 I 2
110 111 101l 1000 000 OOI 1001 11010 OIOI Ol00 Ol

e Uses 6/ bits to encode entire string

Huffman Codes

3 2 I I 2 4 I I 2 I 2
110 111 101l 1000 OO0 OOI 100l 1010 OIOI OI100 OlIl

* Uses 67 bits to encode entire string

e (Can we do better?

3 2 I I 2 4 I I 2 I 2
|00 010 1100 [I10I OIl 101 000l 0000 OOl I110 Il

* Uses 6/ bits to encode entire string

The Encoding Tree

N:4

U:1

A:3

C:2

0 1
2 O O
1 0 1 0 1
T2 c1| |p1| |rR1| |E1

Left = 0; Right = 1

Features of Good Encoding

Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

No internal node has a single child

Nodes with lower frequency have greater
depth

All optimal length unambiguous encodings
have these features

Huffman Encoding

* Input: symbols of alphabet with frequencies

e Huffman encode as follows

* Create a single-node tree for each symbol: key is
frequency; value is letter

* while there is more than one tree
e Find two trees T| and T2 with lowest keys

e Merge them into new tree T with dummy value and
key= T |.key+ T2.key

* Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

N:4

U:1

A:3

C:2

0 1
2 O O
1 0 1 0 1
T2 c1| |p1| |rR1| |E1

Left = 0; Right = 1

How To Implement Huffman

Keep a Vector of Binary Trees

Sort them by decreasing frequency

* Removing two smallest frequency trees is fast

Insert merged tree into correct sorted
location in Vector

Running Time:
* O(n log n) for initial sorting
* O(n?) for rest: O(n) re-insertions of merged trees

Can we do better...?

