
CSCI 136
Data Structures &

Advanced Programming

Lecture 19
Fall 2017

Instructor: Bills

COMPUTER SCIENCE
Preregistration

Info Session

• Learn about Computer Science courses
 offered Spring 2017.

• Talk to professors about their classes.

• Meet other Computer Science students.

• Most importantly... EAT PIZZA!

Monday, October 30
at 9:00 pm

Biology Lounge
TBL 211

Last Time:

• Ordered Structures
• Trees
• Structure, Terminology, Examples

3

Today

• Trees
• Implementation
• Recursion/Induction on Trees
• Applications
• Traversals

4

Introducing Binary Trees

• Degree of each node at most 2
• Recursive nature of tree
• Empty
• Root with left and right subtrees

• SLL: Recursive nature was captured by hidden
node (Node<E>) class

• Binary Tree: No “inner” node class; single
BinaryTree class does it all

• Not part of Structure hierarchy!

+

*

4 2

3
4 * 2 + 3

BinaryTree<String> fourTimesTwo = new BinaryTree<String>

(“*”,new BinaryTree<String>(“4”),new BinaryTree<String>(“2”));

BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String>

(“+”, fourTimesTwo, new BinaryTree<String>(“3”));

Expression Trees

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)

Expression Trees

• General strategy
• Make a binary tree (BT) for each leaf node
• Move from bottom to top, creating BTs
• Eventually reach the root
• Call “evaluate” on final BT

• Example
• How do we make a binary expression tree for

(((4+3)*(10-5))/2)
• Postfix notation: 4 3 + 10 5 - * 2 /

int evaluate(BinaryTree<String> expr) {

if (expr.height() == 0)
return Integer.parseInt(expr.value());

else {
int left = evaluate(expr.left());
int right = evaluate(expr.right());
String op = expr.value();
switch (op) {

case "+" : return left + right;
case "-" : return left - right;
case "*" : return left * right;
case "/" : return left / right;
}

Assert.fail("Bad op");
return -1;

}
}

Full vs. Complete (non-standard!)

• Full tree – A full binary
tree of height h has
leaves only on level h,
and each internal node
has exactly 2 children.

• Complete tree – A
complete binary tree of
height h is full to height h-1
and has all leaves at level h
in leftmost locations.

All full trees are complete, but not all complete trees are full!

Implementing BinaryTree

• BinaryTree<E> class
• Instance variables
• BinaryTree: parent, left, right
• E: value

• left and right are never null
• If no child, they point to an

“empty” tree
• Empty tree T has value null,

parent null, left = right = T

• Only empty tree nodes have
null value

parent
value

rightleft

EMPTY BT

null
null

thisthis

Implementing BinaryTree
• BinaryTree class
• Instance variables
• BT parent, BT left, BT right, E value

null
“*”

rightleft

EMPTY

parent
“4”

rightleft

EMPTY

parent
“2”

rightleft

EMPTY EMPTY

*

4 2

parent
value

rightleft

parent
value

rightleft

null
value

rightleft

parent
value

rightleft

parent
value

rightleft

EMPTY EMPTYEMPTY EMPTY

EMPTY parent
value

rightleft

EMPTY EMPTY

EMPTY != null!

A small tree

Implementing BinaryTree
• Many (!) methods: See BinaryTree javadoc page
• All “left” methods have equivalent “right” methods

• public BinaryTree()
• // generates an empty node (EMPTY)
• // parent and value are null, left=right=this

• public BinaryTree(E value)
• // generates a tree with a non-null value and two empty (EMPTY) subtrees

• public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
• // returns a tree with a non-null value and two subtrees

• public void setLeft(BinaryTree<E> newLeft)
• // sets left subtree to newLeft
• // re-parents newLeft by calling newLeft.setParent(this)

• protected void setParent(BinaryTree<E> newParent)
• // sets parent subtree to newParent
• // called from setLeft and setRight to keep all “links” consistent

Implementing BinaryTree
• Methods:

• public BinaryTree<E> left()
• // returns left subtree

• public BinaryTree<E> parent()
• // post: returns reference to parent node, or null

• public boolean isLeftChild()
• // returns true if this is a left child of parent

• public E value()
• // returns value associated with this node

• public void setValue(E value)
• // sets the value associated with this node

• public int size()
• // returns number of (non-empty) nodes in tree

• public int height()
• // returns height of tree rooted at this node

• But where’s “remove” or “add”?!?!

BT Questions/Proofs

• Prove
• The number of nodes at depth n is at most 2n.
• The number of nodes in tree of height n is at

most 2(n+1)-1.
• A tree with n nodes has exactly n-1 edges
• The size() method works correctly
• The height() method works correctly
• The isFull() method works correctly

BT Questions/Proofs

Prove: Number of nodes at depth d≥0 is at most 2d.

Idea: Induction on depth d of nodes of tree

Base case: d= 0: 1 node. 1 = 2o✓

Induction Hyp.: For some d ≥ 0, there are at most 2d

nodes at depth d.
Induction Step: Consider depth d+1. It has at most 2
nodes for every node at depth d.
Therefore it has at most 2*2d = 2d+1 nodes✓

BT Questions/Proofs

Prove that any tree on n≥1 nodes has n-1 edges

Idea: Induction on number of nodes
Base case: n = 1. There are no edges✓
Induction Hyp: Assume that, for some n ≥ 1, every tree
on n nodes has exactly n-1 edges.
Induction Step: Let T have n+1 nodes. Show it has
exactly n edges.
• Remove a leaf v (and its single edge) from T
• Now T has n nodes, so it has n-1 edges
• Now add v (and its single edge) back, giving n+1

nodes and n edges.

BT Questions/Proofs
Alternate Proof: Strong Induction
Induction Hyp.: For some n≥1, every tree T with k≤n
nodes has exactly k-1 edges.
Induction Step: Let T have n+1 nodes
• Let n(T) = # of nodes of T and e(T) = # of edges of T
• Remove the root node r of T along with its 2 edges
• This leaves the two subtrees TL and TR of T
• TL and TR each have at most n nodes
• So n(TL) = 1 + e(TL) and So n(TR) = 1 + e(TR)
• Now add r (and its 2 edges) back

• Then n(T) = 1 + n(TL) + n(TR) and e(T) = 2 + e(TL) + e(TR)

• But n(TL) + n(TR) = 1 + e(TL) + 1 + e(TR) = e(T) ✓

Special case: One of TL orTR is empty. What changes?

BT Questions/Proofs
Prove that BinaryTree method size() is correct.

• Let n be the number of nodes in the tree T
• Alert: Strong Induction Ahead...

Base case: n = 0. T is empty---size() returns 0✓
Induction Hyp: Assume size() is correct for all trees
having at most n nodes.
Induction Step: Assume T has n+1 nodes
• Then left/right subtrees each have at most n nodes
• So size() returns correct value for each subtree
• And the size of T is 1 + size of left subtree + size of

right subtree✓

Representing Knowledge

• Trees can be used to represent knowledge
• Example: InfiniteQuestions game

• We often call these trees decision trees
• Leaf: object
• Internal node: question to distinguish objects

• Move down decision tree until we reach a leaf node
• Check to see if the leaf is correct

• If not, add another question, make new and old objects
children

• Let’s look at the code…

Building Decision Trees

• Gather/obtain data
• Analyze data
• Make greedy choices: Find good questions that

divide data into halves (or as close as possible)

• Construct tree with shortest height
• In general this is a *hard* problem!
• Example

yellow

Representing Arbitrary Trees

• What if nodes can have many children?
• Example: Game trees

• Replace left/right node references with a list of
children (Vector, SLL, etc)
• Allows getting “ith” child

• Should provide method for getting degree of a
node

• Degree 0 ↔Empty list ↔No children ↔Leaf

