CSCI 136 Data Structures & Advanced Programming

Lecture 19

Fall 2017

Instructor: Bills

Last Time:

- Ordered Structures
- Trees
 - Structure, Terminology, Examples

Today

- Trees
 - Implementation
 - Recursion/Induction on Trees
 - Applications
 - Traversals

Introducing Binary Trees

- Degree of each node at most 2
- Recursive nature of tree
 - Empty
 - Root with left and right subtrees
- SLL: Recursive nature was captured by hidden node (Node<E>) class
- Binary Tree: No "inner" node class; single BinaryTree class does it all
- Not part of Structure hierarchy!

Expression Trees

$$4 * 2 + 3$$

Build using constructor

new BinaryTree<E>(value, leftSubTree, rightSubTree)

```
BinaryTree<String> fourTimesTwo = new BinaryTree<String>
    ("*",new BinaryTree<String>("4"),new BinaryTree<String>("2"));
```

```
BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String>
    ("+", fourTimesTwo, new BinaryTree<String>("3"));
```

Expression Trees

- General strategy
 - Make a binary tree (BT) for each leaf node
 - Move from bottom to top, creating BTs
 - Eventually reach the root
 - Call "evaluate" on final BT
- Example
 - How do we make a binary expression tree for (((4+3)*(10-5))/2)
 - Postfix notation: 4 3 + 10 5 * 2 /

```
int evaluate(BinaryTree<String> expr) {
    if (expr.height() == 0)
      return Integer.parseInt(expr.value());
   else {
      int left = evaluate(expr.left());
      int right = evaluate(expr.right());
      String op = expr.value();
      switch (op) {
      case "+" : return left + right;
      case "-" : return left - right;
      case "*": return left * right;
      case "/" : return left / right;
      Assert.fail("Bad op");
      return -1;
```

Full vs. Complete (non-standard!)

 Full tree – A full binary tree of height h has leaves only on level h, and each internal node has exactly 2 children.

All full trees are complete, but not all complete trees are full!

- BinaryTree<E> class
 - Instance variables
 - BinaryTree: parent, left, right
 - E: value
- left and right are never null
 - If no child, they point to an "empty" tree
 - Empty tree T has value null, parent null, left = right = T
 - Only empty tree nodes have null value

EMPTY BT

- BinaryTree class
 - Instance variables
 - BT parent, BT left, BT right, E value

EMPTY != null!

- Many (!) methods: See BinaryTree javadoc page
- All "left" methods have equivalent "right" methods
 - public BinaryTree()
 - // generates an empty node (EMPTY)
 - // parent and value are null, left=right=this
 - public BinaryTree(E value)
 - // generates a tree with a non-null value and two empty (EMPTY) subtrees
 - public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
 - // returns a tree with a non-null value and two subtrees
 - public void setLeft(BinaryTree<E> newLeft)
 - // sets left subtree to newLeft
 - // re-parents newLeft by calling newLeft.setParent(this)
 - protected void setParent(BinaryTree<E> newParent)
 - // sets parent subtree to newParent
 - // called from setLeft and setRight to keep all "links" consistent

- Methods:
 - public BinaryTree<E> left()
 - // returns left subtree
 - public BinaryTree<E> parent()
 - // post: returns reference to parent node, or null
 - public boolean isLeftChild()
 - // returns true if this is a left child of parent
 - public E value()
 - // returns value associated with this node
 - public void setValue(E value)
 - // sets the value associated with this node
 - public int size()
 - // returns number of (non-empty) nodes in tree
 - public int height()
 - // returns height of tree rooted at this node
 - But where's "remove" or "add"?!?!

Prove

- The number of nodes at depth n is at most 2ⁿ.
- The number of nodes in tree of height n is at most $2^{(n+1)}$ -1.
- A tree with n nodes has exactly n-l edges
- The size() method works correctly

Prove: Number of nodes at depth d≥0 is at most 2^d. Idea: Induction on depth d of nodes of tree

Base case: d=0: I node. $I=2^{\circ}$

Induction Hyp.: For some $d \ge 0$, there are at most 2^d nodes at depth d.

Induction Step: Consider depth d+1. It has at most 2 nodes for every node at depth d.

Therefore it has at most $2*2^d = 2^{d+1}$ nodes \checkmark

Prove that any tree of n≥1 nodes has n-1 edges

Idea: Induction on number of nodes

Base case: n = 1. There are no edges ✓

Induction Hyp: Assume that, for some $n \ge 1$, every tree of n nodes has exactly n-1 edges.

Induction Step: Let T have n+1 nodes. Show it has exactly n edges.

- Remove a leaf v (and its single edge) from T
- Now T has n nodes, so it has n-1 edges
- Now add v (and its single edge) back, giving n+1 nodes and n edges.

Alternate Proof: Strong Induction

Induction Hyp.: For some $n \ge 1$, every tree T with $k \le n$ nodes has exactly k-1 edges.

Induction Step: Let T have n+1 nodes

- Let n(T) = # of nodes of T and e(T) = # of edges of T
- Remove the root node r of T along with its 2 edges
- This leaves the two subtrees T_L and T_R of T
- T_L and T_R each have at most n nodes
- So $n(T_L) = I + e(T_L)$ and So $n(T_R) = I + e(T_R)$
- Now add r (and its 2 edges) back
 - Then $n(T) = I + n(T_L) + n(T_R)$ and $e(T) = 2 + e(T_L) + e(T_R)$
 - But $n(T_L) + n(T_R) = I + e(T_L) + I + e(T_R) = e(T)$

Special case: One of T_L or T_R is empty. What changes?

Prove that BinaryTree method size() is correct.

- Let n be the number of nodes in the tree T
- Alert: Strong Induction Ahead...

Base case: n = 0. T is empty---size() returns $0 \checkmark$ Induction Hyp: Assume size() is correct for *all trees* having *at most* n nodes.

Induction Step: Assume T has n+1 nodes

- Then left/right subtrees each have at most n nodes
- So size() returns correct value for each subtree
- And the size of T is I + size of left subtree + size of right subtree ✓