CSCI 136
 Data Structures \&
 Advanced Programming

Lecture 19
Fall 2017
Instructor: Bills

Last Time:

- Ordered Structures
- Trees
- Structure, Terminology, Examples

Today

- Trees
- Implementation
- Recursion/Induction on Trees
- Applications
- Traversals

Introducing Binary Trees

- Degree of each node at most 2
- Recursive nature of tree
- Empty
- Root with left and right subtrees
- SLL: Recursive nature was captured by hidden node (Node<E>) class
- Binary Tree: No "inner" node class; single BinaryTree class does it all
- Not part of Structure hierarchy!

Expression Trees

$$
4 * 2+3
$$

Build using constructor

new BinaryTree<E>(value, leftSubTree, rightSubTree)

BinaryTree<String> fourTimesTwo = new BinaryTree<String> ("*",new BinaryTree<String>("4"),new BinaryTree<String>("2"));

BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String> ("+", fourTimesTwo, new BinaryTree<String>("3"));

Expression Trees

- General strategy
- Make a binary tree (BT) for each leaf node
- Move from bottom to top, creating BTs
- Eventually reach the root
- Call "evaluate" on final BT
- Example
- How do we make a binary expression tree for $(((4+3) *(10-5)) / 2)$
- Postfix notation: $43+105-* 2 /$
int evaluate(BinaryTree<String> expr) \{

```
    if (expr.height() == 0)
    return Integer.parseInt(expr.value());
```

 else \{
 int left = evaluate(expr.left());
 int right = evaluate(expr.right());
 String op = expr.value();
 switch (op) \{
 case "+" : return left + right;
 case "-" : return left - right;
 case "*" : return left * right;
 case "/" : return left / right;
 \}
 Assert.fail("Bad op");
 return -1;
 \}
\}

Full vs. Complete (non-standard!)

- Full tree - A full binary tree of height h has leaves only on level h, and each internal node has exactly 2 children.

- Complete tree - A complete binary tree of height h is full to height h -I and has all leaves at level h in leftmost locations.

All full trees are complete, but not all complete trees are full!

Implementing BinaryTree

- BinaryTree<E> class
- Instance variables
- BinaryTree: parent, left, right
- E: value
- left and right are never null
- If no child, they point to an "empty" tree
- Empty tree T has value null, parent null, left = right = T

null	
null	
this	this

- Only empty tree nodes have EMPTY BT null value

Implementing BinaryTree

- BinaryTree class
- Instance variables

- BT parent, BT left, BT right, E value

Implementing BinaryTree

- Many (!) methods: See BinaryTree javadoc page
- All "left" methods have equivalent "right" methods
- public BinaryTree()
- // generates an empty node (EMPTY)
- // parent and value are null, left=right=this
- public BinaryTree(E value)
- // generates a tree with a non-null value and two empty (EMPTY) subtrees
- public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
- // returns a tree with a non-null value and two subtrees
- public void setLeft(BinaryTree<E> newLeft)
- // sets left subtree to newLeft
- // re-parents newLeft by calling newLeft.setParent(this)
- protected void setParent(BinaryTree<E> newParent)
- // sets parent subtree to newParent
- // called from setLeft and setRight to keep all "links" consistent

Implementing BinaryTree

- Methods:
- public BinaryTree<E> left()
- // returns left subtree
- public BinaryTree<E> parent()
- // post: returns reference to parent node, or null
- public boolean isLeftChild()
- // returns true if this is a left child of parent
- public E value()
- // returns value associated with this node
- public void setValue(E value)
- // sets the value associated with this node
- public int size()
- // returns number of (non-empty) nodes in tree
- public int height()
- // returns height of tree rooted at this node
- But where's "remove" or "add"?!?!

BT Questions/Proofs

- Prove
- The number of nodes at depth n is at most 2^{n}.
- The number of nodes in tree of height n is at most $2^{(n+1)}$ - 1 .
- A tree with n nodes has exactly n-I edges
- The size() method works correctly

BT Questions/Proofs

Prove: Number of nodes at depth $\mathrm{d} \geq 0$ is at most 2^{d}. Idea: Induction on depth d of nodes of tree

Base case: $\mathrm{d}=0$: I node. $\mathrm{I}=2^{\circ} \sqrt{ }$
Induction Hyp.: For some $\mathrm{d} \geq 0$, there are at most $2^{\text {d }}$ nodes at depth d.
Induction Step: Consider depth $\mathrm{d}+\mathrm{I}$. It has at most 2 nodes for every node at depth d.
Therefore it has at most $2 * 2^{d}=2^{d+1}$ nodes \mathcal{V}

BT Questions/Proofs

Prove that any tree of $n \geq 1$ nodes has n-I edges
Idea: Induction on number of nodes
Base case: $\mathrm{n}=\mathrm{I}$. There are no edges \checkmark
Induction Hyp: Assume that, for some $\mathrm{n} \geq \mathrm{I}$, every tree of n nodes has exactly n - I edges.
Induction Step: Let T have $\mathrm{n}+\mathrm{I}$ nodes. Show it has exactly n edges.

- Remove a leaf v (and its single edge) from T
- Now T has n nodes, so it has n-I edges
- Now add v (and its single edge) back, giving $n+1$ nodes and n edges.

BT Questions/Proofs

Alternate Proof: Strong Induction
Induction Hyp.: For some $n \geq 1$, every tree T with $k \leq n$ nodes has exactly k -I edges.
Induction Step: Let T have $\mathrm{n}+\mathrm{I}$ nodes

- Let $n(T)=\#$ of nodes of T and $e(T)=\#$ of edges of T
- Remove the root node r of T along with its 2 edges
- This leaves the two subtrees T_{L} and T_{R} of T
- T_{L} and T_{R} each have at most n nodes
- So $n\left(T_{L}\right)=I+e\left(T_{L}\right)$ and So $n\left(T_{R}\right)=I+e\left(T_{R}\right)$
- Now add r (and its 2 edges) back
- Then $n(T)=1+n\left(T_{L}\right)+n\left(T_{R}\right)$ and $e(T)=2+e\left(T_{L}\right)+e\left(T_{R}\right)$
- But $n\left(T_{L}\right)+n\left(T_{R}\right)=I+e\left(T_{L}\right)+I+e\left(T_{R}\right)=e(T) \checkmark$

Special case: One of T_{L} or T_{R} is empty. What changes?

BT Questions/Proofs

Prove that BinaryTree method size() is correct.

- Let n be the number of nodes in the tree T
- Alert: Strong Induction Ahead...

Base case: $\mathrm{n}=0 . \mathrm{T}$ is empty---size() returns $0 \checkmark$ Induction Hyp: Assume size() is correct for all trees having at most n nodes.
Induction Step: Assume T has $\mathrm{n}+\mathrm{I}$ nodes

- Then left/right subtrees each have at most n nodes
- So size() returns correct value for each subtree
- And the size of T is I + size of left subtree + size of right subtree $\sqrt{ }$

