
CSCI 136
Data Structures &

Advanced Programming

Lecture 17
Fall 2017

Instructor: Bills



Administrative Details

• Lab 7 is now available
• No partners this week
• Review before lab; come to lab with design doc
• Check out the javadoc pages for the 3 provided 

classes
• Token – A wrapper for semantic PS elements,
• Reader – An iterator to produce a stream of Tokens 

from standard input or a List of Tokens,
• SymbolTable – A dictionary with String keys and Token 

values: For user-defined names
2



Last Time: Queues & Iterators

• Queues: Implementations Recap
• Queues: Applications
• Iterators

3



This Time: Iterators & Ordered 
Structures 

• Iterators Recap
• Iterating over Iterators
• Ordered Structures
• OrderedVector
• OrderedList

4



Iterators
• Iterators provide support for efficiently visiting all 

elements of a data structure 
• An Iterator:

• Provides generic methods to dispense values for
• Traversal of elements : Iteration
• Production of values : Generation

• Abstracts away details of how to access elements
• Uses different implementations for each structure

public interface Iterator<E> {
boolean hasNext() – are there more elements in iteration?
E next() – return next element
default void remove() – removes most recently returned value

• Default : Java provides an implementation for remove
• It throws an UnsupportedOperationException exception



Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())

if(o.equals(iter.next())) count++;
return count;

}   
// Or...

public int numOccurs (List<E> data, E o) {
int count = 0;
for(Iterator<E> i = data.iterator());
i.hasNext();)

if(o.equals(i.next())) count++;
return count;

}



Implementation Details

• We use both the Iterator interface and the 
AbstractIterator class

• All specific implementations in structure5 extend 
AbstractIterator
• AbstractIterator partially implements Iterator

• Importantly, AbstractIterator adds two methods
• get() – peek at (but don’t take) next element, and
• reset() – reinitialize iterator for reuse

• Methods are specialized for specific data structures



Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
for(AbstractIterator<E> i =

(AbstractIterator<E>) data.iterator();
i.hasNext(); i.next())

if(o.equals(i.get())) count++;
return count;

}

Using an AbstractIterator allows more flexible coding
(but requiring a cast to AbstractIterator)

Note: Can now write a ‘standard’ 3-part for statement



More Iterator Examples

• How would we implement VectorIterator?
• How about StackArrayIterator?
• Do we go from bottom to top, or top to bottom?
• Doesn’t matter!  We just have to be consistent…

• We can also make “specialized iterators
• SkipIterator.java

• next() post-work: skip elts until new next found

• ReverseIterator.java
• A massive cheat!



Iterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop

for( E elt : arr) {System.out.println( elt );}

Or,  for example

// return number of times o appears in data
public int numOccurs (E[] data, E o) {

int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

Why did that work?!
List provides an iterator() method and…



The Iterable Interface

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

We can use the “for-each” construct…

for( E elt : boxOfStuff ) { ... }

…as long as boxOfStuff implements the Iterable interface

public interface Iterable<T>
public Iterator<T> iterator(); 

Duane’s Structure interface extends Iterable, so we can use it:



General Rules for Iterators

1. Understand order of data structure
2. Always call hasNext() before calling next()!!!
3. Use remove with caution!
4. Don’t add to structure while iterating: TestIterator.java

• Take away messages:
• Iterator objects capture state of traversal
• They have access to internal data representations
• They should be fast and easy to use



Lab 7: PostScript Interpreter
• PostScript is a stack-based programming language

• designed for vector graphics & printing

• Lab 7: Implement a small portion of a PS interpreter
• Read a stream of “tokens”
• Evaluate expressions using a stack
• Allow for creation of variables (and procedures!) using a 

symbol table

• Provided:
• Reader, Token, and SymbolTable class
• You write an interpreter class

• Try out GhostScript: unix command: gs
• It will pop up a graphics window – ignore it



Lab 7: Concept Overview

• Basic input unit: the token: There are multiple types

• Number, Boolean, Symbol, Procedure (sorry, no Strings)
• Implemented with class Token

• A PostScript program is a sequence of tokens
• Tokens are processed as received

• Numbers, booleans, procedures go on stack
• A symbol should

– Be put on stack (if preceded by /), or
– Cause an operation to be performed if it is a built-in symbol (add, pstack, …), or
– Cause its value to be looked up in symbol table and appropriate action taken

• The SymbolTable class provides a symbol table
• The Reader class provides in iterator for producing a stream of tokens

• Stream can come from standard input, a single Token, or a List of Tokens

• Your job: Write code to carry out the processing
• Driven by a method (you write) interpret(Reader r)



Lab 7: Suggested Approach

1. Read Lab handout and description in text carefully
2. Read the Javadoc pages for the 3 provided classes: 

Using these classes well will help you a great deal!
3. Develop a plan. Here are some starting steps

1. Write your interpret method so that it just reads a token 
stream from standard input and prints out each token.

2. Handle numbers, booleans, and pstack/pop operators
3. Follow the steps in the text in order

4. Debug as you go, use gs program to clarify expected 
behavior



Ordered Structures

• Until now, we have not required a specific 
ordering to the data stored in our structures
• If we wanted the data ordered/sorted, we had to 

do it ourselves

• We often want to keep data ordered
• Allows for faster searching
• Easier data mining - easy to find best, worst, and 

median values, as well as rank (relative position)



Ordering Structures

• The key to establishing order is being able to 
compare objects

• We already know how to compare two 
objects…how?

• Comparators and compare(T a, T b)
• Comparable interface and compareTo(T that)
• Two means to an end: which should we use?

BOTH!



Ordered Vectors
• We want to create a Vector that is always sorted

• When new elements are added, they are inserted into 
correct position

• We still need the standard set of Vector methods
• add, remove, contains, size, iterator, …

• Two choices
• Extend Vector (as we did in sorting lab)
• Create new class

• Allows for more focused interface
• Can have a Vector as an instance variable

• We will implement a new class (OrderedVector)
• Start with Comparables
• Generalize to use Comparators instead of Comparables



OrderedVector Methods
public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<E> {
protected Vector<E> data;

public OrderedVector() {
data = new Vector<E>();

}

public void add(E value) {
int pos = locate(value);
data.add(pos, value);

}

protected int locate(E value) {
//use modified binary search to find position of value
//if not found, returns position where add should occur
//uses iterative version of binary search (see text)
}



OrderedVector Methods
public boolean contains(E value) {

int pos = locate(value);
return pos < size() && data.get(pos).equals(value);

}

public Object remove (E value) {
if (contains(value)) {

int pos = locate(value);
return data.remove(pos);

}
else return null;

}

Performance:
add - O(n)
contains - O(log n)
remove - O(n)



Adding Flexibility with Comparators

• We would like to be able to allow ordered 
structures to use different orders

• Idea: Add constructor that has a Comparator 
parameter

• Q: How does structure know whether to use 
the Comparator or the Comparable ordering?

• A: The NaturalComparator class.... 



An Aside: Natural Comparators

• NaturalComparators bridge the gap between 
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>> 
implements Comparator<E> {

public int compare(E a, E b) {
return a.compareTo(b);

}
}



Generalizing OrderedVector
public class OrderedVector<E extends Comparable<E>>

implements OrderedStructure<E> {
protected Vector<E> data;
protected Comparator<E> comp;

public OrderedVector() {
data = new Vector<E>();
this.comp = new NaturalComparator<E>();

}

public OrderedVector(Comparator<E> comp) {
data = new Vector<E>();
this.comp = comp;

}

protected int locate(E value) {
//use modified binary search to find position of value
//return position
//use comp.compare instead of compareTo

}

//rest stays same…


