CSCI 136
Data Structures &
Advanced Programming

Lecture |7
Fall 2017

Instructor: Bills

Administrative Details

e Lab 7 is now available

* No partners this week
* Review before lab; come to lab with design doc

e Check out the javadoc pages for the 3 provided
classes
e Token — A wrapper for semantic PS elements,

e Reader — An iterator to produce a stream of Tokens
from standard input or a List of Tokens,

e SymbolTable — A dictionary with String keys and Token
values: For user-defined names

Last Time: Queues & lterators

* Queues: Implementations Recap
e Queues: Applications
* |terator motivation and lterator API

This Time: lterators & Ordered
Structures

Iterator Recap
Iterator Implementations
Iterating over Iterators

Ordered Structures
e OrderedVector
e OrderedList

|terators

e lIterators provide support for efficiently visiting all
elements of a data structure

e An lterator:

* Provides generic methods to dispense values for
* Traversal of elements : Iteration
* Production of values : Generation

e Abstracts away details of how to access elements
e Uses different implementations for each structure

public interface Iterator<iE> {

boolean hasNext() — are there more elements in iteration?
E next() — return next element
default void remove() — removes most recently returned value

e Default : Java provides an implementation for remove
e It throws an UnsupportedOperationException exception

lterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())
if(o.equals(iter.next()))
count++;

No increment step because
return count;

i.next() “consumes” an element

}

// Or...
public int numOccurs (List<E> data, E o) {

int count = 0;
for(Iterator<E> i1 = data.iterator(); i.hasNext();)
if(o.equals(i.next()))
count++;
return count;

Implementation Details

We use both an Iterator interface and an
Abstractlterator class

All specific implementations in structure5 extend
Abstractlterator

e Abstractlterator partially implements lterator

Importantly, Abstractlterator adds two methods
» get() — peek at (but don’t take) next element, and

* reset() — reinitialize iterator for reuse

Methods are specialized for specific data structures

lterator Use : numQOccurs

Using an Abstractlterator allows for more flexible coding
(but requiring a cast to Abstractlterator)

Note: It has the form of a standard 3-part for statement

public int numOccurs (List<E> data, E o) {
int count = 0;
for (AbstractIterator<gE> i =
(AbstractIterator<kE>) data.iterator();
i.hasNext(); i.next())
if(o.equals(i.get())) count++;
return count;

Iterator’s next () consumes a value. To reuse that value, either create a

temporary variable, or use AbstractIterator’s get ()

Implementation : SLLIterator

public class SinglyLinkedListIterator<E> extends AbstractIterator<iE> {

protected Node<E> head;
protected Node<E> current;

public SinglyLinkedListIterator (Node<E> head) {
this.head = head;
reset();

}

public void reset() { current = head;}

public E next() {
E value = current.value();
current = current.next();
return value;

}
public boolean hasNext() { return current != null; }
public E get() { return current.value(); }

In SinglyLinkedList.java:

public Iterator<E> iterator() {
return new SinglyLinkedListIterator<E>(head);

}

More Iterator Examples

 How would we implement Vectorlterator!?

e How about StackArraylterator?
* Do we go from bottom to top, or top to bottom!?

* Doesn’t matter! We just have to be consistent...

* We can also make “specialized” iterators
e Another SLL Example: Skiplterator.java

e Reverselterator.java

lterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop
for(E elt : arr) {System.out.println(elt);}

Or, for example

// return number of times o appears in data
public int numOccurs (E[] data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current))
count++;
return count;

We can use this syntax with classes that provide an iterator() method
because...

The lterable Interface

We can use the “for-each” construct...
for(E elt : stuff) { ... }

...as long as stuff implements the Tterable interface

public interface Iterable<T>
public Iterator<T> iterator();

Duane’s Structure interface extends Tterable, so we can use it;

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

S~ W N -

General Rules for Iterators

Understand order of data structure
Always call hasNext() before calling next()!!!
Use remove with caution!

Don’t add to structure while iterating: Testlterator.java

Take away messages:
e lterator objects capture state of traversal
 They have access to internal data representations

 They should be fast and easy to use

Lab 7: PostScript Interpreter

PostScript is a stack-based programming language

 designed for vector graphics & printing

Lab 7: Implement a small portion of a PS interpreter
e Read a stream of “tokens”
* Evaluate expressions using a stack

e Allow for creation of variables (and procedures!) using a
symbol table

You are Provided:
e Reader, Token, and SymbolTable classes

* You write an Interpreter class

Try out GhostScript: (Unix command: gs)

* It will pop up a graphics window — ignore that window

Lab 7: Concept Overview

e Basic input unit: the token: There are multiple types
e Number, Boolean, Symbol, Procedure (sorry, no Strings)

e Implemented with class Token

e A PostScript program is a sequence of tokens

e Tokens are processed as received
* Numbers, booleans, procedures go on stack

e A symbol should
— Be put on stack (if preceded by /), or
— Cause an operation to be performed if it is a built-in symbol (add, pstack, ...), or

— Cause its value to be looked up in symbol table and appropriate action taken

* The SymbolTable class provides a symbol table

* The Reader class provides in iterator for producing a stream of tokens

e Stream can come from standard input, a single Token, or a List of Tokens

* Your job: Write code to carry out the processing
e Driven by a method that you write: interpret (Reader r)

Lab 7: Suggested Approach

|. Read Lab handout and description in text carefully

2. Read the Javadoc pages for the 3 provided classes:
Using these classes well will help you a great deal!

3. Develop a plan. Here are some starting steps

|. Write your interpret method so that it just reads a token
stream from standard input and prints out each token.

2. Handle numbers, booleans, and pstack/pop operators

3. Follow the steps in the text in order

4. Debug as you go, use gs program to clarify expected
behavior

Ordered Structures

e Until now, we have not required a specific
ordering to the data stored in our structures

* |f we wanted the data ordered/sorted, we had to
do it ourselves

* We often want to keep data ordered
* Allows for faster searching

 Easier data mining - easy to find best, worst,
average, and median values

Ordering Structures

The key to establishing order is being able to
compare objects and rank them

We already know how to compare two
objects...how!

Comparators and compare(T a, T b)
Comparable interface and compareTo(T that)

Two means to an end: which should we use!?

BOTH!

OrderedStructure Interface

public interface OrderedStructure<K extends
Comparable<K>>

extends Structure<k>

* Recall:a Structure supports adding and removing
elements, and membership checks

e An OrderedStructureisa Structure that
stores Comparable elements

* We have the APl we want, and the “sortability” we want

Ordered Vectors

* We want to create a Vector that is always sorted

* When new elements are added, they are inserted into
correct position

 We still need the standard set of Vector methods
* add, remove, contains, size, iterator, ...
e Two choices
e Extend Vector (as we did in sorting lab)

e Create new class
* Allows for more focused interface
e Can have a Vector as an instance variable

* We will implement a new class (OrderedVector)
e Start with Comparables
* Generalize to use Comparators instead of Comparables

