CSCI 136
Data Structures &
Advanced Programming

Lecture |4
Fall 2016

Instructor: Bill Lenhart

Announcements

* Problem Set 2 due Thursday@| |1:00pm
* Leave in instructor cubby outside of TCL 303

e Mid-Term Review Session
e [0/16 and 10/17, 8:00-9:00 pm in a location TBD
* No prepared remarks, so bring questions!

e Mid-term exam is VWednesday, October|8
* During your normal lab session

* You'll have approximately | hour & 45 minutes (if you
come on time!)

e Closed-book: Covers Chapters |-7 & 9, handouts, and all
topics up through Sorting

e A “sample” mid-term and study sheet will be available
online

Last Time

* Basic Sorting Summary
* Comparator interfaces for flexible sorting

* More Efficient Sorting Algorithms
* MergeSort
e QuickSort

Today

QuickSort and Sorting Wrap-Up

Linear Structures
e The Linear Interface (LIFO & FIFO)
e The AbstractLinear and AbstractStack classes

Stack Implementations

e StackArray, StackVector, StackList,
Stack applications

* Expression Evaluation

* PostScript: Page Description & Programming
e Mazerunning (Depth-First-Search)

Quick Sort

e Quick sort is designed to behave much like
Merge sort, without requiring extra storage

space

Merge Sort

Quick Sort

Divide list in half

Partition™ list into 2 parts

Sort halves

Sort parts

Merge halves

Join* sorted parts

Recall Merge Sort

private static void mergeSortRecursive(Comparable data[],
Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;
int 1i;

if (n < 2) return;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge(data,temp, low,middle,high);

Quick Sort

// pre: low <= high
// post: data[low..high] in ascending order
public void quickSortRecursive(Comparable datal],
int low, int high) {
int pivot;
if (low >= high) return;

/* 1 — split with pivot */

pivot = partition(data, low, high);

/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+l, high);

Partition

|. Put first element (pivot) into sorted position

2. All to the left of “pivot” are smaller and all
to the right are larger

3. Return index of “pivot”

Partition by Hungarian Folk Dance

Partition

int partition(int data[], int left,

int right) {
while (true) {

while (left < right && data[left] < data[right])
right--;

if (left < right) {
swap(data,left++,right);
} else {

return left;

while (left < right && data[left] < data[right])
left++;

if (left < right) {

swap(data, left,right--);
} else {

return right;

Complexity

* Time:
 Partition is O(n)

* If partition breaks list exactly in half, same as
merge sort, so O(n log n)

* |f data is already sorted, partition splits list into
groups of | and n-1, so O(n?)

* Space:
* O(n) (so is MergSort)

* In fact, it’s n + c compared to 2n + c for MergeSort

3500

3000

2500

2000

1500

1000

500

Merge vs. Quick

0

500000

1000000

1500000

2000000

2500000

3000000

3500000 4000000 4500000

Food for Thought...

* How to avoid picking a bad pivot value!?

e Pick median of 3 elements for pivot (heuristic!)

* Combine selection sort with quick sort
* For small n, selection sort is faster
e Switch to selection sort when n is small

e Switch to selection/insertion sort when the list is
almost sorted (partitions are very unbalanced)

e Heuristic!

Sorting Wrapup

Time Space
Bubble Worst: O(n?) O(n):n+c
Best: O(n) - if “optimiazed”
Insertion Worst: O(n?) O(n):n+c
Best: O(n)
Selection Worst = Best: O(n?) O(n) :n+c
Merge Worst = Best:: O(n log n) O(n) :2n + ¢
Quick Average = Best: O(n log n) O(n) :n+c
Worst: O(n?) ,

More Skill-Testing
(Try these at home)

Given the following list of integers:
29561 101524
|) Sort the list using Bubble sort. Show your work!

2) Sort the list using Insertion sort. . Show your work!

3) Sort the list using Merge sort. . Show your work!

4) Verify the best and worst case time and space
complexity for each of these sorting algorithms as
well as for selection sort.

Linear Structures

* What if we want to impose access restrictions
on our lists?

* |.e., provide only one way to add and remove
elements from list

* No longer provide access to middle
* Key Examples: Order of removal depends on
order elements were added
e LIFO: Last In First Out
e FIFO: First In First Out

Examples

e FIFO: First In — First Out (Queue)
* Line at dining hall

e Data packets arriving at a router

e LIFO: Last In — First Out (Stack)
 Stack of trays at dining hall

* Java Virtual Machine stack

The StructureS Universe (next)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Linear Interface

e How should it differ from List interface!?

* Should have fewer methods than List interface since
we are limiting access ...

e Methods:

* Inherits all of the Structure interface methods
e add(E value) — Add a value to the structure.
* E remove(E o) — Remove value o from the structure.
* int size(), isEmpty(), clear(), contains(E value), ...

e Adds

e E get() — Preview the next object to be removed.
* E remove() — Remove the next value from the structure.
* boolean empty() — same as isEmpty()

Linear Structures

* Why no “random access !

e |.e., no access to middle of list

* More restrictive than general List structures

* Less functionality can result in
e Simpler implementation

e Greater efficiency

* Approaches
e Use existing structures (Vector, LL), or

e Use underlying organization, but simplified

Stacks

e Examples: stack of trays or cups
e Can only take tray/cup from top of stack

* What methods do we need to define!?
e Stack interface methods

* New terms: push, pop, peek
* Only use push, pop, peek when talking about stacks
e Push = add to top of stack
* Pop = remove from top of stack
* Peek = look at top of stack (do not remove)

20

Notes about Terminology

When using stacks:

° pop = remove

e push = add

e peek = get

In Stack interface, pop/push/peek methods call

add/remove/get methods that are defined in Linear
interface

But “add” is not mentioned in Stack interface (it is
inherited from Linear)

Stack interface extends Linear interface
* |nterfaces extend other interfaces
e Classes implement interfaces

21

Stack Implementations

* Array-based stack
* int top, Object data]]
e Add/remove from index top

e Vector-based stack

e Vector data
e Add/remove from tail

e List-based stack

e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space) »

Stack Implementations

e structure5.StackArray
* int top, Object data[]
e Add/remove from index top

e structureb.StackVector
* Vector data
e Add/remove from tail

e structureb5.StackList

e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space) s

Summary Notes on The Hierarchy

Linear interface extends Structure
* add(E val), empty(), get(), remove(), size()
AbstractLinear (partially) implements Linear

AbstractStack class (partially) extends AbstractLinear
 Essentially introduces “stack-ish” names for methods
e push(E val) is add(E val), pop() is remove(), peek() is get()

e Now we can extend AbstractStack to make

“concrete” Stack types
e StackArray<E>: holds an array of type E; add/remove at high end
e StackVector<E>: similar, but with a vector for dynamic growth
o StackList<E>: A singly-linked list with add/remove at head

* We implement add, empty, get, remove, size directly
* push, pop, peek are then indirectly implemented 24

The Structure5 Universe (so far)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Stack Applications

« Stack Implementation is simple, applications are many
« Evaluating mathematical expressions

Searching (Depth-First Search)

« Removing recursion for optimization

Simulations

Evaluating Arithmetic Expressions

e Computer programs regularly use stacks to
evaluate arithmetic expressions

e Example: x*y+z

 First rewrite as xy*z+ (we’ll look at this rewriting
process in more detail soon)

e Then:

* push x
* pushy
* * (pop twice, multiply popped items, push result)
* push z

e + (pop twice, add popped items, push result) .

Converting Expressions

* We (humans) primarily use “infix” notation to
evaluate expressions

° (xty)'z

e Computers traditionally used “postfix” (also called
Reverse Polish) notation

o xy+z*

e Operators appear after operands, parentheses not
necessary

* How do we convert between the two!?

e Compilers do this for us

Converting Expressions

 Example: x*y+z*w
e Conversion

|) Add full parentheses to preserve order of
operations

(OFy)+(z*w))

2) Move all operators (+-*/) after operands
((xy™)(zw*)+)

3) Remove parentheses
Xy zw™*+

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:
* Read the next token from input.
 If the token is a value, push it onto the stack.

* Else, the token is an operator that takes n arguments.
e (It is known a priori that the operator takes n arguments.)
e If there are fewer than n values on the stack — error.

* Else, pop the top n values from the stack.
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.

The top value on the stack is the result of the calculation.

Note that results can be left on stack to be used in future
computations:
e Eg: 32 *4 + followed by 5 / yields 2 on top of stack

Example

o (X*Y)+(z*WwW) > xy*zw*+
* Evaluate:
e Push x
e Pushy
e Mult: Pop y, Pop x, Push x*y
e Push z
* Push w
e Mult: Pop w, Pop z, Push z*w
* Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
* Result is now on top of stack

Preview: PostScript

PostScript is a programming language used for
generating vector graphics

e Best-known application: describing pages to printers

It is a stack-based language

* Values are put on stack

e Operators pop values from stack, put result back on
e There are numeric, logic, string values

e Many operators

Let’s try it: The ‘gs’ command runs a PostScript
interpreter....

You’'ll be writing a (tiny part of) gs in lab soon....

Preview: PostScript

Types: numeric, boolean, string, array, dictionary
Operators: arithmetic, logical, graphic, ...
Procedures

Variables: for objects and procedures

PostScript is just as powerful as Java, Python, ...
* Not as intuitive
e Easy to automatically generate

