CSCI 136 Data Structures & Advanced Programming

> Lecture 14 Fall 2016 Instructor: Bill Lenhart

Announcements

- Problem Set 2 due Thursday@II:00pm
 - Leave in instructor cubby outside of TCL 303
- Mid-Term Review Session
 - 10/16 and 10/17, 8:00-9:00 pm in a location TBD
 - No prepared remarks, so bring questions!
- Mid-term exam is Wednesday, October 18
 - During your normal lab session
 - You'll have approximately I hour & 45 minutes (if you come on time!)
 - Closed-book: Covers Chapters 1-7 & 9, handouts, and all topics up through Sorting
 - A "sample" mid-term and study sheet will be available online

Last Time

- Basic Sorting Summary
- Comparator interfaces for flexible sorting
- More Efficient Sorting Algorithms
 - MergeSort
 - QuickSort

Today

- QuickSort and Sorting Wrap-Up
- Linear Structures
 - The Linear Interface (LIFO & FIFO)
 - The AbstractLinear and AbstractStack classes
- Stack Implementations
 - StackArray, StackVector, StackList,
- Stack applications
 - Expression Evaluation
 - PostScript: Page Description & Programming
 - Mazerunning (Depth-First-Search)

Quick Sort

 Quick sort is designed to behave much like Merge sort, without requiring extra storage space

Merge Sort	Quick Sort
Divide list in half	Partition [*] list into 2 parts
Sort halves	Sort parts
Merge halves	Join* sorted parts

Recall Merge Sort

```
private static void mergeSortRecursive(Comparable data[],
                    Comparable temp[], int low, int high) {
  int n = high-low+1;
  int middle = low + n/2;
  int i;
  if (n < 2) return;
  // move lower half of data into temporary storage
  for (i = low; i < middle; i++) {
      temp[i] = data[i];
   }
  // sort lower half of array
  mergeSortRecursive(temp,data,low,middle-1);
  // sort upper half of array
  mergeSortRecursive(data,temp,middle,high);
  // merge halves together
  merge(data,temp,low,middle,high);
```

}

Quick Sort

```
// pre: low <= high</pre>
// post: data[low..high] in ascending order
public void quickSortRecursive(Comparable data[],
                     int low, int high) {
        int pivot;
        if (low >= high) return;
       /* 1 - split with pivot */
        pivot = partition(data, low, high);
       /* 2 - sort small */
       quickSortRecursive(data, low, pivot-1);
       /* 3 - sort large */
       quickSortRecursive(data, pivot+1, high);
}
```

Partition

- I. Put first element (pivot) into sorted position
- All to the left of "pivot" are smaller and all to the right are larger
- 3. Return index of "pivot"

Partition by Hungarian Folk Dance

Partition

```
int partition(int data[], int left, int right) {
  while (true) {
    while (left < right && data[left] < data[right])</pre>
      right--;
    if (left < right) {</pre>
      swap(data,left++,right);
    } else {
      return left;
    }
    while (left < right && data[left] < data[right])</pre>
      left++;
    if (left < right) {</pre>
      swap(data,left,right--);
    } else {
      return right;
    }
  }
}
```

Complexity

- Time:
 - Partition is O(n)
 - If partition breaks list exactly in half, same as merge sort, so O(n log n)
 - If data is already sorted, partition splits list into groups of I and n-I, so O(n²)
- Space:
 - O(n) (so is MergSort)
 - In fact, it's n + c compared to 2n + c for MergeSort

Merge vs. Quick

Ш

Food for Thought...

- How to avoid picking a bad pivot value?
 - Pick median of 3 elements for pivot (heuristic!)
- Combine selection sort with quick sort
 - For small n, selection sort is faster
 - Switch to selection sort when n is small
 - Switch to selection/insertion sort when the list is almost sorted (partitions are very unbalanced)
 - Heuristic!

Sorting Wrapup

	Time	Space
Bubble	Worst: O(n ²)	O(n) : n + c
	Best: O(n) - if "optimiazed"	
Insertion	Worst: O(n ²)	O(n) : n + c
	Best: O(n)	
Selection	Worst = Best: $O(n^2)$	O(n) : n + c
Merge	Worst = Best:: O(n log n)	O(n) : 2n + c
Quick	Average = Best: O(n log n)	O(n) : n + c
	Worst: O(n ²)	13

More Skill-Testing (Try these at home)

Given the following list of integers:

9561101524

- I) Sort the list using Bubble sort. Show your work!
- 2) Sort the list using Insertion sort. . Show your work!
- 3) Sort the list using Merge sort. . Show your work!
- 4) Verify the best and worst case time and space complexity for each of these sorting algorithms as well as for selection sort.

Linear Structures

- What if we want to impose access restrictions on our lists?
 - I.e., provide only one way to add and remove elements from list
 - No longer provide access to middle
- Key Examples: Order of removal depends on order elements were added
 - LIFO: Last In First Out
 - FIFO: First In First Out

Examples

- FIFO: First In First Out (Queue)
 - Line at dining hall
 - Data packets arriving at a router
- LIFO: Last In First Out (Stack)
 - Stack of trays at dining hall
 - Java Virtual Machine stack

The Structure5 Universe (next)

Linear Interface

- How should it differ from List interface?
 - Should have fewer methods than List interface since we are limiting access ...
- Methods:
 - Inherits all of the Structure interface methods
 - add(E value) Add a value to the structure.
 - E remove(E o) Remove value o from the structure.
 - int size(), isEmpty(), clear(), contains(E value), ...
 - Adds
 - E get() Preview the next object to be removed.
 - E remove() Remove the *next* value from the structure.
 - boolean empty() same as isEmpty()

Linear Structures

- Why no "random access"?
 - I.e., no access to middle of list
- More restrictive than general List structures
 - Less functionality can result in
 - Simpler implementation
 - Greater efficiency
- Approaches
 - Use existing structures (Vector, LL), or
 - Use underlying organization, but simplified

Stacks

- Examples: stack of trays or cups
 - Can only take tray/cup from top of stack
- What methods do we need to define?
 - Stack interface methods
- New terms: push, pop, peek
 - Only use push, pop, peek when talking about stacks
 - Push = add to top of stack
 - Pop = remove from top of stack
 - Peek = look at top of stack (do not remove)

Notes about Terminology

- When using stacks:
 - pop = remove
 - push = add
 - peek = get
- In Stack interface, pop/push/peek methods call add/remove/get methods that are defined in Linear interface
- But "add" is not mentioned in Stack interface (it is inherited from Linear)
- Stack interface **extends** Linear interface
 - Interfaces *extend* other interfaces
 - Classes implement interfaces

Stack Implementations

- Array-based stack
 - int top, Object data[]
 - Add/remove from index top
- Vector-based stack
 - Vector data
 - Add/remove from tail
- List-based stack
 - SLL data
 - Add/remove from head

- + all operations are O(I)
- wasted/run out of space

- +/- most ops are O(I) (add is O(n) in worst case)
- potentially wasted space
- + all operations are O(I)
 +/- O(n) space overhead
 (no "wasted" space) 22

Stack Implementations

- structure5.StackArray
 - int top, Object data[]
 - Add/remove from index top
- structure5.StackVector
 - Vector data
 - Add/remove from tail
- structure5.StackList
 - SLL data
 - Add/remove from head

- + all operations are O(I)
- wasted/run out of space

- +/- most ops are O(I) (add is O(n) in worst case)
- potentially wasted space
- + all operations are O(I)
 +/- O(n) space overhead
 (no "wasted" space) 23

Summary Notes on The Hierarchy

- Linear interface extends Structure
 - add(E val), empty(), get(), remove(), size()
- AbstractLinear (partially) implements Linear
- AbstractStack class (partially) extends AbstractLinear
 - Essentially introduces "stack-ish" names for methods
 - push(E val) is add(E val), pop() is remove(), peek() is get()
- Now we can extend AbstractStack to make "concrete" Stack types
 - StackArray<E>: holds an array of type E; add/remove at high end
 - StackVector<E>: similar, but with a vector for dynamic growth
 - StackList<E>: A singly-linked list with add/remove at head
 - We implement add, empty, get, remove, size directly
 - push, pop, peek are then indirectly implemented

The Structure5 Universe (so far)

Stack Applications

- Stack Implementation is simple, applications are many
 - Evaluating mathematical expressions
 - Searching (Depth-First Search)
 - Removing recursion for optimization
 - Simulations
 - .

Evaluating Arithmetic Expressions

- Computer programs regularly use stacks to evaluate arithmetic expressions
- Example: x*y+z
 - First rewrite as xy*z+ (we'll look at this rewriting process in more detail soon)
 - Then:
 - push x
 - push y
 - * (pop twice, multiply popped items, push result)
 - push z
 - + (pop twice, add popped items, push result)

Converting Expressions

- We (humans) primarily use "infix" notation to evaluate expressions
 - (x+y)*z
- Computers traditionally used "postfix" (also called Reverse Polish) notation
 - xy+z*
 - Operators appear after operands, parentheses not necessary
- How do we convert between the two?
 - Compilers do this for us

Converting Expressions

- Example: x*y+z*w
- Conversion
 - Add full parentheses to preserve order of operations ((x*y)+(z*w))
 - Move all operators (+-*/) after operands ((xy*)(zw*)+)
 - Remove parentheses
 xy*zw*+

Use Stack to Evaluate Postfix Exp

- While there are input "tokens" (i.e., symbols) left:
 - Read the next token from input.
 - If the token is a value, push it onto the stack.
 - Else, the token is an operator that takes n arguments.
 - (It is known a priori that the operator takes n arguments.)
 - If there are fewer than n values on the stack \rightarrow error.
 - Else, pop the top n values from the stack.
 - Evaluate the operator, with the values as arguments.
 - Push the returned result, if any, back onto the stack.
 - The top value on the stack is the result of the calculation.
 - Note that results can be left on stack to be used in future computations:
 - Eg: 3 2 * 4 + followed by 5 / yields 2 on top of stack

Example

- (x^*y) + $(z^*w) \rightarrow xy^*zw^*$ +
- Evaluate:
 - Push x
 - Push y
 - Mult: Pop y, Pop x, Push x*y
 - Push z
 - Push w
 - Mult: Pop w, Pop z, Push z*w
 - Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
 - Result is now on top of stack

Preview: PostScript

- PostScript is a programming language used for generating vector graphics
 - Best-known application: describing pages to printers
- It is a stack-based language
 - Values are put on stack
 - Operators pop values from stack, put result back on
 - There are numeric, logic, string values
 - Many operators
- Let's try it: The 'gs' command runs a PostScript interpreter....
- You'll be writing a (tiny part of) gs in lab soon....

Preview: PostScript

- Types: numeric, boolean, string, array, dictionary
- Operators: arithmetic, logical, graphic, ...
- Procedures
- Variables: for objects and procedures
- PostScript is just as powerful as Java, Python, ...
 - Not as intuitive
 - Easy to automatically generate