
CSCI 136
Data Structures &

Advanced Programming

Lecture 14
Fall 2016

Instructor: Bill Lenhart

Announcements
• Problem Set 2 due Thursday@11:00pm

• Leave in instructor cubby outside of TCL 303

• Mid-Term Review Session
• 10/16 and 10/17, 8:00-9:00 pm in a location TBD
• No prepared remarks, so bring questions!

• Mid-term exam is Wednesday, October18
• During your normal lab session
• You’ll have approximately 1 hour & 45 minutes (if you

come on time!)
• Closed-book: Covers Chapters 1-7 & 9, handouts, and all

topics up through Sorting
• A “sample” mid-term and study sheet will be available

online 2

Last Time

• Basic Sorting Summary
• Comparator interfaces for flexible sorting

• More Efficient Sorting Algorithms
• MergeSort
• QuickSort

3

Today
• QuickSort and Sorting Wrap-Up
• Linear Structures

• The Linear Interface (LIFO & FIFO)
• The AbstractLinear and AbstractStack classes

• Stack Implementations
• StackArray, StackVector, StackList,

• Stack applications
• Expression Evaluation
• PostScript: Page Description & Programming
• Mazerunning (Depth-First-Search)

4

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

5

Recall Merge Sort
private static void mergeSortRecursive(Comparable data[],

Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;
int i;

if (n < 2) return;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge(data,temp,low,middle,high);

}
6

Quick Sort

// pre: low <= high
// post: data[low..high] in ascending order
public void quickSortRecursive(Comparable data[],

int low, int high) {
int pivot;
if (low >= high) return;

/* 1 – split with pivot */
pivot = partition(data, low, high);
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

7

Partition

1. Put first element (pivot) into sorted position

2. All to the left of “pivot” are smaller and all
to the right are larger

3. Return index of “pivot”

8

Partition by Hungarian Folk Dance

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;
if (left < right) {

swap(data,left++,right);
} else {

return left;
}

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);

} else {
return right;

}
}

} 9

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

10

Merge vs. Quick

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

11

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when n is small
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic!

12

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if “optimiazed”

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

13

More Skill-Testing
(Try these at home)

Given the following list of integers:
9 5 6 1 10 15 2 4

1) Sort the list using Bubble sort. Show your work!
2) Sort the list using Insertion sort. . Show your work!
3) Sort the list using Merge sort. . Show your work!
4) Verify the best and worst case time and space

complexity for each of these sorting algorithms as
well as for selection sort.

14

Linear Structures

• What if we want to impose access restrictions
on our lists?
• I.e., provide only one way to add and remove

elements from list
• No longer provide access to middle

• Key Examples: Order of removal depends on
order elements were added
• LIFO: Last In First Out
• FIFO: First In First Out

15

Examples

• FIFO: First In – First Out (Queue)
• Line at dining hall
• Data packets arriving at a router

• LIFO: Last In – First Out (Stack)
• Stack of trays at dining hall
• Java Virtual Machine stack

16

The Structure5 Universe (next)

Linear Interface

• How should it differ from List interface?
• Should have fewer methods than List interface since

we are limiting access …
• Methods:
• Inherits all of the Structure interface methods

• add(E value) – Add a value to the structure.
• E remove(E o) – Remove value o from the structure.
• int size(), isEmpty(), clear(), contains(E value), …

• Adds
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()

18

Linear Structures

• Why no “random access”?
• I.e., no access to middle of list

• More restrictive than general List structures
• Less functionality can result in

• Simpler implementation
• Greater efficiency

• Approaches
• Use existing structures (Vector, LL), or
• Use underlying organization, but simplified

19

Stacks

• Examples: stack of trays or cups
• Can only take tray/cup from top of stack

• What methods do we need to define?
• Stack interface methods

• New terms: push, pop, peek
• Only use push, pop, peek when talking about stacks
• Push = add to top of stack
• Pop = remove from top of stack
• Peek = look at top of stack (do not remove)

20

Notes about Terminology
• When using stacks:

• pop = remove
• push = add
• peek = get

• In Stack interface, pop/push/peek methods call
add/remove/get methods that are defined in Linear
interface

• But “add” is not mentioned in Stack interface (it is
inherited from Linear)

• Stack interface extends Linear interface
• Interfaces extend other interfaces
• Classes implement interfaces 21

Stack Implementations

• Array-based stack
• int top, Object data[]
• Add/remove from index top

• Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space) 22

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space) 23

Summary Notes on The Hierarchy
• Linear interface extends Structure

• add(E val), empty(), get(), remove(), size()

• AbstractLinear (partially) implements Linear
• AbstractStack class (partially) extends AbstractLinear

• Essentially introduces “stack-ish” names for methods
• push(E val) is add(E val), pop() is remove(), peek() is get()

• Now we can extend AbstractStack to make
“concrete” Stack types
• StackArray<E>: holds an array of type E; add/remove at high end
• StackVector<E>: similar, but with a vector for dynamic growth
• StackList<E>: A singly-linked list with add/remove at head
• We implement add, empty, get, remove, size directly

• push, pop, peek are then indirectly implemented 24

The Structure5 Universe (so far)

Stack Applications

26

• Stack Implementation is simple, applications are many
• Evaluating mathematical expressions
• Searching (Depth-First Search)
• Removing recursion for optimization
• Simulations
• ...

Evaluating Arithmetic Expressions

• Computer programs regularly use stacks to
evaluate arithmetic expressions

• Example: x*y+z
• First rewrite as xy*z+ (we’ll look at this rewriting

process in more detail soon)
• Then:

• push x
• push y
• * (pop twice, multiply popped items, push result)
• push z
• + (pop twice, add popped items, push result)

27

Converting Expressions

• We (humans) primarily use “infix” notation to
evaluate expressions
• (x+y)*z

• Computers traditionally used “postfix” (also called
Reverse Polish) notation
• xy+z*
• Operators appear after operands, parentheses not

necessary

• How do we convert between the two?
• Compilers do this for us

Converting Expressions

• Example: x*y+z*w
• Conversion

1) Add full parentheses to preserve order of
operations
((x*y)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw*)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp
• While there are input “tokens” (i.e., symbols) left:

• Read the next token from input.
• If the token is a value, push it onto the stack.
• Else, the token is an operator that takes n arguments.

• (It is known a priori that the operator takes n arguments.)
• If there are fewer than n values on the stack ® error.
• Else, pop the top n values from the stack.

– Evaluate the operator, with the values as arguments.
– Push the returned result, if any, back onto the stack.

• The top value on the stack is the result of the calculation.
• Note that results can be left on stack to be used in future

computations:
• Eg: 3 2 * 4 + followed by 5 / yields 2 on top of stack

Example

• (x*y)+(z*w) → xy*zw*+
• Evaluate:

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack

Preview: PostScript

• PostScript is a programming language used for
generating vector graphics
• Best-known application: describing pages to printers

• It is a stack-based language
• Values are put on stack
• Operators pop values from stack, put result back on
• There are numeric, logic, string values
• Many operators

• Let’s try it: The ‘gs’ command runs a PostScript
interpreter….

• You’ll be writing a (tiny part of) gs in lab soon....

Preview: PostScript

• Types: numeric, boolean, string, array, dictionary
• Operators: arithmetic, logical, graphic, …
• Procedures
• Variables: for objects and procedures
• PostScript is just as powerful as Java, Python, ...

• Not as intuitive
• Easy to automatically generate

