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Administrative Details

• Mountain Day Madness!
• All topics move one lecture earlier until M.D.
• Problem Set 2 is online

• Due 11:00pm, Thursday, Oct. 12 (in instructor’s mail 
cubby)

• Reading Period Madness
• Normal TA hours are in effect
• Lab 5 will go online this weekend
• Bring a design document to Lab on Wednesday

• We’ll begin collecting them again 2



Last Time

• The Comparable Interface
• Including: how to write a generic static method
• Generic Linear and Binary Search methods

• Basic Sorting
• Bubble, Insertion, Selection Sorts
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Today’s Outline

• Basic Sorting Summary
• Comparator interfaces for flexible sorting

• More Efficient Sorting Algorithms
• MergeSort
• QuickSort
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Basic Sorting Algorithms
• BubbleSort
• Swaps consecutive elements of a[0..k] until largest 

element is at a[k]; Decrements k and repeats

• InsertionSort
• Assumes a[0..k] is sorted and moves a[k+1] 

across a[0..k] until a[0..k+1] is sorted
• Increments k and repeats

• SelectionSort
• Finds largest item in a[0..k] and swaps it with a[k]
• Decrements k and repeats
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Basic Sorting Algorithms
(All Run in O(n2) Time)

• BubbleSort
• Always performs cn2 comparisons and might need 

to perform cn2 swaps

• InsertionSort
• Might need to perform cn2 comparisons and cn2

swaps

• SelectionSort
• Always performs cn2 comparisons but only O(n) 

swaps 6



Lower Bound Notation
Definition: A function f(n) is 𝛺(g(n)) if for some 
constant c > 0 and all n ≥ n0

𝑓 𝑛 ≥ 𝑐	𝑔(𝑛)
So, f(n) is 𝛺(g(n)) exactly when g(n) is O(f(n))

The previous slide says that all three sorting algorithms 
have time complexity
• O(n2) : Never use more than c n2 operations
• 𝛀(n2) : Sometimes use at least c n2 operations
When f(n) is O(g(n)) and f(n) is 𝛀(g(n)) we write

f(n) is 𝚹(g(n))
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Comparators

• Limitations with Comparable interface
• Only permits one order between objects
• What if it isn’t the desired ordering?
• What if it isn’t implemented?

• Solution: Comparators 
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Comparators (Ch 6.8)

• A comparator is an object that contains a method that 
is capable of comparing two objects

• Sorting methods can be written to apply a comparator 
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data 
to sort in different orders or on different keys

public interface Comparator <E> { 
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b 
public int compare(E a, E b); 

} 
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Example
class Patient {

protected int age;
protected String name;
public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does 
not implement
Comparable or 
Comparator!
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Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And recompiling class X

• Comparator Interface
• Allows creation of “Compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Sort Strings by length (alphabetically for equal-length)
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Selection Sort with Comparator
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public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++) 

if (c.compare(a[maxPos], a[i]) < 0) maxPos = i;
return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different 
Comparator<E> values to the sort method;



Merge Sort

• A divide and conquer algorithm
• Merge sort works as follows:

• If the list is of length 0 or 1, then it is already sorted.
• Divide the unsorted list into two sublists of about half the 

size of original list.
• Sort each sublist recursively by re-applying merge sort.
• Merge the two sublists back into one sorted list.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n)
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Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge
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Transylvanian Merge Sort Folk Dance



Merge Sort
• How would we implement it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[],  int from, int to)

if ( from ≤ to )
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
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Merge Sort
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)? 
• Need an extra array, so really O(2n)!  But O(2n) = O(n)
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Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9]    split
• [8 14] [29 1] [17 39] [16 9]    split
• [8] [14] [29] [1] [17] [39] [16] [9]   split
• [8 14] [1 29] [17 39] [9 16]  merge
• [1 8 14 29] [9 16 17 39]  merge
• [1 8 9 14 16 17 29 39]  merge

log n

log n

merge takes at most n comparisons per line
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Time Complexity is O( n log(n) )

• Prove for n = 2k (true for other n but harder)
• That is, MergeSort for  performs at most
• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base case: k ≤ 1: 0 comparisons: 0 < 1 ∗ 21✓

• Induction Step: Suppose true for all integers 
smaller than k. Let T(k) be # of comparisons 
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓
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Merge Sort

• Unlike Bubble, Insertion, and Selection sort, 
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)
• Merge sort complexity: O(n log n) 

• Are there any problems or limitations with 
Merge sort?

• Why would we ever use any other algorithm 
for sorting?
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Problems with Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth 
between original array and temporary array

• Can we avoid this?

20



Quick Sort

• Quick sort is designed to behave much like 
Merge sort, without requiring extra storage 
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts
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Recall Merge Sort
private static void mergeSortRecursive(Comparable data[], 

Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;
int i;

if (n < 2) return;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge(data,temp,low,middle,high);

}
22



Quick Sort

// pre: low <= high
// post: data[low..high] in ascending order
public void quickSortRecursive(Comparable data[],

int low, int high) {
int pivot;   
if (low >= high) return;

/* 1 – split with pivot */
pivot = partition(data, low, high);    
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}
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Partition

1. Put first element (pivot) into sorted position

2. All to the left of “pivot” are smaller and all 
to the right are larger

3. Return index of “pivot”
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Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;    
if (left < right) {

swap(data,left++,right);
} else {

return left;           
}

while (left < right && data[left] < data[right]) 
left++;

if (left < right) {
swap(data,left,right--); 

} else {
return right;    

}         
}    

} 25



Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as 

merge sort, so O(n log n)
• If data is already sorted, partition splits list into 

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort
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Merge vs. Quick
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Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is 

almost sorted (partitions are very unbalanced)
• Heuristic!
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Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if  “optimiazed”

O(n) : n + c

Insertion Worst: O(n2) 
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c
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More Skill-Testing
(Try these at home)

Given the following list of integers:
9  5  6  1  10  15  2  4

1) Sort the list using Bubble sort.  Show your work!
2) Sort the list using Insertion sort. .  Show your work!
3) Sort the list using Merge sort. .  Show your work!
4) Verify the best and worst case time and space 

complexity for each of these sorting algorithms as 
well as for selection sort.

30


