
CSCI 136
Data Structures &

Advanced Programming

Lecture 13
Fall 2017

Instructors: Bill & Bill

Administrative Details

• Mountain Day Madness!
• All topics move one lecture earlier until M.D.
• Problem Set 2 is online

• Due 11:00pm, Thursday, Oct. 12 (in instructor’s mail
cubby)

• Reading Period Madness
• Normal TA hours are in effect
• Lab 5 will go online this weekend
• Bring a design document to Lab on Wednesday

• We’ll begin collecting them again 2

Last Time

• The Comparable Interface
• Including: how to write a generic static method
• Generic Linear and Binary Search methods

• Basic Sorting
• Bubble, Insertion, Selection Sorts

3

Today’s Outline

• Basic Sorting Summary
• Comparator interfaces for flexible sorting

• More Efficient Sorting Algorithms
• MergeSort
• QuickSort

4

Basic Sorting Algorithms
• BubbleSort
• Swaps consecutive elements of a[0..k] until largest

element is at a[k]; Decrements k and repeats

• InsertionSort
• Assumes a[0..k] is sorted and moves a[k+1]

across a[0..k] until a[0..k+1] is sorted
• Increments k and repeats

• SelectionSort
• Finds largest item in a[0..k] and swaps it with a[k]
• Decrements k and repeats

5

Basic Sorting Algorithms
(All Run in O(n2) Time)

• BubbleSort
• Always performs cn2 comparisons and might need

to perform cn2 swaps

• InsertionSort
• Might need to perform cn2 comparisons and cn2

swaps

• SelectionSort
• Always performs cn2 comparisons but only O(n)

swaps 6

Lower Bound Notation
Definition: A function f(n) is 𝛺(g(n)) if for some
constant c > 0 and all n ≥ n0

𝑓 𝑛 ≥ 𝑐	𝑔(𝑛)
So, f(n) is 𝛺(g(n)) exactly when g(n) is O(f(n))

The previous slide says that all three sorting algorithms
have time complexity
• O(n2) : Never use more than c n2 operations
• 𝛀(n2) : Sometimes use at least c n2 operations
When f(n) is O(g(n)) and f(n) is 𝛀(g(n)) we write

f(n) is 𝚹(g(n))
7

Comparators

• Limitations with Comparable interface
• Only permits one order between objects
• What if it isn’t the desired ordering?
• What if it isn’t implemented?

• Solution: Comparators

8

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

9

Example
class Patient {

protected int age;
protected String name;
public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does
not implement
Comparable or
Comparator!

10

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And recompiling class X

• Comparator Interface
• Allows creation of “Compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Sort Strings by length (alphabetically for equal-length)
11

Selection Sort with Comparator

12

public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)

if (c.compare(a[maxPos], a[i]) < 0) maxPos = i;
return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;

Merge Sort

• A divide and conquer algorithm
• Merge sort works as follows:

• If the list is of length 0 or 1, then it is already sorted.
• Divide the unsorted list into two sublists of about half the

size of original list.
• Sort each sublist recursively by re-applying merge sort.
• Merge the two sublists back into one sorted list.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n)

13

Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge

14

Transylvanian Merge Sort Folk Dance

Merge Sort
• How would we implement it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from ≤ to)
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
15

Merge Sort
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)?
• Need an extra array, so really O(2n)! But O(2n) = O(n)

16

Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge

log n

log n

merge takes at most n comparisons per line

17

Time Complexity is O(n log(n))

• Prove for n = 2k (true for other n but harder)
• That is, MergeSort for performs at most
• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base case: k ≤ 1: 0 comparisons: 0 < 1 ∗ 21✓

• Induction Step: Suppose true for all integers
smaller than k. Let T(k) be # of comparisons
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓

18

Merge Sort

• Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)
• Merge sort complexity: O(n log n)

• Are there any problems or limitations with
Merge sort?

• Why would we ever use any other algorithm
for sorting?

19

Problems with Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

20

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

21

Recall Merge Sort
private static void mergeSortRecursive(Comparable data[],

Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;
int i;

if (n < 2) return;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge(data,temp,low,middle,high);

}
22

Quick Sort

// pre: low <= high
// post: data[low..high] in ascending order
public void quickSortRecursive(Comparable data[],

int low, int high) {
int pivot;
if (low >= high) return;

/* 1 – split with pivot */
pivot = partition(data, low, high);
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

23

Partition

1. Put first element (pivot) into sorted position

2. All to the left of “pivot” are smaller and all
to the right are larger

3. Return index of “pivot”

24

Partition by Hungarian Folk Dance

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;
if (left < right) {

swap(data,left++,right);
} else {

return left;
}

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);

} else {
return right;

}
}

} 25

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

26

Merge vs. Quick

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

27

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic!

28

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if “optimiazed”

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

29

More Skill-Testing
(Try these at home)

Given the following list of integers:
9 5 6 1 10 15 2 4

1) Sort the list using Bubble sort. Show your work!
2) Sort the list using Insertion sort. . Show your work!
3) Sort the list using Merge sort. . Show your work!
4) Verify the best and worst case time and space

complexity for each of these sorting algorithms as
well as for selection sort.

30

