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Administrative Details

• Lab 4 Today!
• Try to answer questions before lab

• Mountain Day Madness!
• If This Friday is Mountain Day

• Lab 5 will go on-line this weekend
• Problem Set 2---coming this Friday---will also go on-line 

this weekend (due next Friday at start of class)
• And---OMG---we won’t see you again until next 

Wednesday!!!
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Last Time

• More about Mathematical Induction
• For algorithm run-time and correctness

• More About Recursion
• Recursion on arrays; helper methods
• Recursion on Chains

• Strong Induction

• Linear and Binary Searching review
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Today’s Outline

• The Comparable Interface
• Basic Sorting
• Bubble, Insertion, Selection Sorts
• Including proofs of correctness

And, if time permits…

• Comparator interfaces for flexible sorting
• More Efficient Sorting Algorithms
• MergeSort, QuickSort

4



Recall : Binary Search
public class BinSearch {

public static int binarySearch(int a[], int value) {
return recBinarySearch(a, value, 0, a.length-1); }

protected static int recBinarySearch(int a[], int value, int 
low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half

return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}
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Recall: Binary Search

• Why does it work?
• Because items can be ordered (they are comparable)
• So they can be sorted then searched based on ordering

• Why is it fast?
• Cut `search space in half with each comparison!

• Requires items to be comparable

• If items are not comparable, we typically need 
to do a linear search
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Linear Search

• Complexity analysis of linear search:
• Best case: O(1)
• Worst case: O(n)
• Average case: O(n)
• Recall

• Assume all locations equally likely
• The average number of comparisons is

(1 + 2 + 3 + ... + n)/n = (n+1)/2, so O(n)
• Here’s a generic linear search method
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Generic Linear Search Method
public class LinearSearchGeneric {
// post: returns index of value in a, or -1 if not found
// Note the <E> between static and int: a generic method!

public static <E> int linearSearch(E a[], E value) {
for (int i = 0; i < a.length; i++) {

if (a[i].equals(value)) {
return i;

}
}
return -1;

}
public static void main(String args[]) {

// search a String array
System.out.println(linearSearch(args, "cow"));       
// search an Integer array
Integer odds[] = new Integer[] { 1,3,5,7,9 };
System.out.println(linearSearch(odds, 7));

}
}
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Linear vs. Binary Search

• Clearly binary is preferable
• But it requires ordered (i.e., sorted) data.
• We need comparable items
• Unlike with equality testing, the Object class 

doesn’t define a “compare()” method 😟
• We want a uniform way of saying objects can be 

compared, so we can write generic versions of 
methods like binary search

• Use an interface! (We’ll see two approaches)



Comparable Interface

• Java provides an interface for comparisons between objects
• Provides a replacement for “<“ and “>” in recBinarySearch

• Java provides the Comparable interface, which specifies a 
method compareTo()
• Any class that implements Comparable, provides compareTo()

public interface Comparable<T> {
//post: return < 0 if this smaller than other

return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);
}



compareTo in Card Example

We could have written 

public class CardRankSuit implements 
Comparable<CardRankSuit> {

public int compareTo(CardRankSuit other) {
if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());
}

// rest of code for the class....
}



compareTo in Card Example

We actually wrote (in Card.java)

public interface Card extends Comparable<Card> {
public int compareTo(Card other);
// remainder of interface code

}

And in CardAbstract.java, we added

public int compareTo(Card other) {
if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());
}



Class/Interface Hierarchy

Comparable

Card

AbstractCard

CardRankSuit

extends Comparable<Card>

implements Card

extends AbstracctCard

• As a result, all of our implementations of the 
Card interface have comparable card types!



compareTo in Card Example

Notes
• Enum types implement Comparable and define compareTo
• The magnitude of the values returned by compareTo are not 

important.  We only care if value is positive, negative, or 0!
• compareTo defines a “natural ordering” of Objects

• There’s nothing “natural” about it….

• We use the BubbleSort algorithm to sort the cards in 
CardDeck.java



Comparable & compareTo

• The Comparable interface (Comparable<T>) is part of the 
java.lang (not structure5) package.

• Other Java-provided structures can take advantage of objects 
that implement Comparable
• See the Arrays class in java.util
• Example JavaArraysBinSearch

• Users of Comparable are urged to ensure that compareTo()
and equals() are consistent.  That is,
• x.compareTo(y) == 0 exactly when x.equals(y) == true

• Note that Comparable limits user to a single ordering
• The syntax can get kind of dense

• See BinSearchComparable.java : a generic binary search method
• And even more cumbersome….



ComparableAssociation
• Suppose we want an ordered Dictionary, so that we can use binary 

search instead of linear
• Structure5 provides a ComparableAssociation class that 

implements Comparable.
• The class declaration for ComparableAssociation is

…wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>

Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>

(Yikes!)
• Example: Since Integer implements Comparable, we can write

• ComparableAssociation<Integer, String> myAssoc = 
new ComparableAssociation( new Integer(567), “Bob”);

• We could then use Arrays.sort on an array of these



Subset Sum
• Given an array a[] of integers and a target integer T, is 

there a subset of the integers in the array that sum to 
T?

• Example a[] = 10, 7, 12, 3, 5, 11, 8, 9, 1, 15:
• T = 31? Yes: 10 + 7 + 5 + 9
• T = 79? No. [Why?]

• How could we solve this problem?
• Hint: Either we use a[0] or we don’t….
• Need: canMakeSumHelper(int set[], int target, int index)

• How could we prove our method was correct?



Complexity Analysis of Subset Sum

• The Subset Sum algorithm we wrote is slow.
• How slow?
• Let sn be the minimum number of steps the 

algorithm might take on an array of size n.
• sn ≥ 1 + sn-1 + sn-1 > 2 sn-1

• s1 = 1

• Claim: sn ≥ 2n-1---an exponential lower bound
• Proof: Induction.  [Easy: try it for homework]

• Can also prove an upper bound of O(2n)



Bubble Sort

• First Pass:
• ( 5 1 3 2 9 ) ® ( 1 5 3 2 9 ) 
• ( 1 5 3 2 9 ) ® ( 1 3 5 2 9 )
• ( 1 3 5 2 9 ) ® ( 1 3 2 5 9 )

• ( 1 3 2 5 9 ) ® ( 1 3 2 5 9 ) 

• Second Pass:
• ( 1 3 2 5 9 ) ® (1 3 2 5 9 )
• ( 1 3 2 5 9 ) ® ( 1 2 3 5 9 )

• ( 1 2 3 5 9 ) ® ( 1 2 3 5 9 )

• Third Pass:
• ( 1 2 3 5 9 ) -> (1 2 3 5 9 )

• ( 1 2 3 5 9 ) -> ( 1 2 3 5 9 )

• Fourth Pass:
• ( 1 2 3 5 9 ) -> (1 2 3 5 9 )

http://www.youtube.com/watch?v=lyZQPjUT5B4



Sorting Preview: Bubble Sort
• CardDeck used BubbleSort to sort the deck
• Simple sorting algorithm that works by repeatedly 

stepping through the list to be sorted, comparing 
two items at a time and swapping them if they are in 
the wrong order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble" 

to the end of the list
• Time complexity?

• O(n2)

• Space complexity?
• O(n) total  (no additional space is required)



Sorting Preview: Insertion Sort

• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7



Sorting Preview: Insertion Sort
• Simple sorting algorithm that works by building a 

sorted list one entry at a time
• Less efficient on large lists than more advanced 

algorithms
• Advantages:

• Simple to implement and efficient on small lists
• Efficient on data sets which are already substantially sorted 

• Time complexity
• O(n2)

• Space complexity
• O(n)



Sorting Preview: Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

• Time Complexity:
• O(n2)

• Space Complexity:
• O(n) 



Sorting Preview: Selection Sort

• Similar to insertion sort
• Performs worse than insertion sort in general
• Noted for its simplicity and performance advantages 

when compared to complicated algorithms
• The algorithm works as follows:

• Find the maximum value in the list
• Swap it with the value in the last position
• Repeat the steps above for remainder of the list (ending at 

the second to last position)



Some Skill Testing!
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Selection sort uses two utility methods
Uses a swap method
private static void swap(int[]A, int i, int j) {

int temp = a[i];
A[i] = A[j];
A[j] = temp;

}

And a max-finding method
// Find position of largest value in A[0 .. last]
public static int findPosOfMax(int[] A, int last) {

int maxPos = 0; // A wild guess
for(int i = 1; i <= last; i++) 

if (A[maxPos] < A[i]) maxPos= i;
return maxPos;

}



Some Skill Testing!
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An Iterative Selection Sort
public static void selectionSort(int[] A) {

for(int i = A.length - 1; i>0; i--) 
int big= findPosOfMax(A,i);
swap(A, i, big);

}
}

A Recursive Selection Sort (just the helper method)
public static void recSSHelper(int[] A, int last) {

if(last == 0) return; // base case

int big= findPosOfMax(A, last);
swap(A,big,last);
recSSHelper(A, last-1);

}



Some Skill Testing!

• Prove: recSSHelper (A, last) sorts elements 
A[0]…A[last].
• Assume that maxLocation(A, last) is correct

• Proof:
• Base case: last = 0. 
• Induction Hypothesis:

• For k<last, recSSHelper sorts A[0]…A[k].

• Prove for last:
• Note: Using Second Principle of Induction (Strong)
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Some Skill Testing!

• After call to findPosOfMax(A, last): 
• ‘big’ is location of largest A[0..last]

• That value is swapped with A[last]:
• Rest of elements are A[0]..A[last-1].

• Since last - 1< last, then by induction
• recSSHelper(A, last-1) sorts A[0]..A[last-1].

• Thus A[0]..A[last-1] are in increasing  order
• and A[last-1] ≤ A[last].

• So, A[0]…A[last] are sorted.
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Comparators

• Limitations with Comparable interface
• Only permits one order between objects
• What if it isn’t the desired ordering?
• What if it isn’t implemented?

• Solution: Comparators 
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Comparators (Ch 6.8)

• A comparator is an object that contains a method that 
is capable of comparing two objects

• Sorting methods can be written to apply a comparator 
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data 
to sort in different orders or on different keys

public interface Comparator <E> { 
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b 
public int compare(E a, E b); 

} 
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Example
class Patient {

protected int age;
protected String name;
public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does 
not implement
Comparable or 
Comparator!
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Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And recompiling class X

• Comparator Interface
• Allows creation of “Compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Sort Strings by length (alphabetically for equal-length)
32



Selection Sort with Comparator
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public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++) 

if (c.compare(a[maxPos], a[i]) < 0) maxPos = i;
return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different 
Comparator<E> values to the sort method;



Merge Sort

• A divide and conquer algorithm
• Merge sort works as follows:

• If the list is of length 0 or 1, then it is already sorted.
• Divide the unsorted list into two sublists of about half the 

size of original list.
• Sort each sublist recursively by re-applying merge sort.
• Merge the two sublists back into one sorted list.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n)
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Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge
• [1 8 9 14 16 17 29 39] merge
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Merge Sort
• How would we implement it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[],  int from, int to)

if ( from ≤ to )
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
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Merge Sort
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)? 
• Need an extra array, so really O(2n)!  But O(2n) = O(n)
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Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9]    split
• [8 14] [29 1] [17 39] [16 9]    split
• [8] [14] [29] [1] [17] [39] [16] [9]   split
• [8 14] [1 29] [17 39] [9 16]  merge
• [1 8 14 29] [9 16 17 39]  merge
• [1 8 9 14 16 17 29 39]  merge

log n

log n

merge takes at most n comparisons per line
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Time Complexity Proof

• Prove for n = 2k (true for other n but harder)
• That is, MergeSort for  performs at most
• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base case: k ≤ 1: 0 comparisons: 0 < 1 ∗ 21✓

• Induction Step: Suppose true for all integers 
smaller than k. Let T(k) be # of comparisons 
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓
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Merge Sort

• Unlike Bubble, Insertion, and Selection sort, 
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)
• Merge sort complexity: O(n log n) 

• Are there any problems or limitations with 
Merge sort?

• Why would we ever use any other algorithm 
for sorting?
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Problems with Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth 
between original array and temporary array

• Can we avoid this?
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Quick Sort

• Quick sort is designed to behave much like 
Merge sort, without requiring extra storage 
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts
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Recall Merge Sort
private static void mergeSortRecursive(Comparable data[], 

Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;
int i;

if (n < 2) return;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge(data,temp,low,middle,high);

}
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Quick Sort

public void quickSortRecursive(Comparable data[],
int low, int high) {

// pre: low <= high
// post: data[low..high] in ascending order

int pivot;   
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);    
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}
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Partition

1. Put first element (pivot) into sorted position

2. All to the left of “pivot” are smaller and all 
to the right are larger

3. Return index of “pivot”
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Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;    
if (left < right) {

swap(data,left++,right);
} else {

return left;           
}

while (left < right && data[left] < data[right]) 
left++;

if (left < right) {
swap(data,left,right--); 

} else {
return right;    

}         
}    
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Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as 

merge sort, so O(n log n)
• If data is already sorted, partition splits list into 

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort
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Merge vs. Quick
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Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is 

almost sorted (partitions are very unbalanced)
• Heuristic!
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Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if  “optimiazed”

O(n) : n + c

Insertion Worst: O(n2) 
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c
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More Skill-Testing
(Try these at home)

Given the following list of integers:
9  5  6  1  10  15  2  4

1) Sort the list using Bubble sort.  Show your work!
2) Sort the list using Insertion sort. .  Show your work!
3) Sort the list using Merge sort. .  Show your work!
4) Verify the best and worst case time and space 

complexity for each of these sorting algorithms as 
well as for selection sort.
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