CSCI 136 Data Structures & Advanced Programming

> Lecture 11 Fall 2017 Instructors: Bills

Administrative Details

- Lab 4 will be available online this afternoon
 - Partner? Submit I folder
- Problem Set I due Thursday by II:00pm
 - In Instructor cubby outside of TCL 303

Last Time

- Comparing Complexity of List Operations on Vectors and Linked Lists
- Recursion and Induction

Today's Outline

- More about Mathematical Induction
 - For algorithm run-time and correctness
- More About Recursion
 - Recursion on arrays; helper methods
 - Recursion on Chains
- Strong Induction
- Linear and Binary Searching review

Mathematical Induction

Principle of Mathematical Induction (Weak)

Let P(0), P(1), P(2), ... Be a sequence of statements, each of which could be either true or false. Suppose that

- I. P(0) is true, and
- 2. For all $n \ge 0$, if P(n) is true, then so is P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as

2. For all n > 0, if P(n-1) is true, then so is P(n). Apology: I do this a lot, as you'll see on future slides!

Form of Induction Proof

- Principle of Mathematical Induction (Weak) Let P(0), P(1), P(2), ... Be a sequence of statements, each of which could be either true or false.
- Show that Base Case P(0) is true
- Show that for any $n \ge 0$
 - If P(n) is true (Induction Hypothesis)
 - Then P(n+1) must be true (Induction Step)

If this can be shown, then each P(n) (n ≥ 0) is true

Mathematical Induction

• Prove:
$$\sum_{i=0}^{n} 2^{i} = 2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1$$

• Prove: $0^3 + 1^3 + ... + n^3 = (0 + 1 + ... + n)^2$

Proof:
$$0^3 + 1^3 + ... + n^3 = (0 + 1 + ... + n)^2$$

Base case: n = 0

- LHS: $0^3 = 0$
- RHS: $(0)^2 = 0 \checkmark$ Induction Hypothesis: Assume that for some n > 0,

$$0^3 + 1^3 + \dots + (n-1)^3 = (0 + 1 + \dots + (n-1))^2$$

Induction Step: Show that

$$0^3 + 1^3 + \dots + n^3 = (0 + 1 + \dots n)^2$$

Proof:
$$0^3 + 1^3 + ... + n^3 = (0 + 1 + ... + n)^2$$

Note: I'm just doing the induction step: n-1 \rightarrow n version

$$0^{3} + 1^{3} + \dots + n^{3} = (0^{3} + 1^{3} + \dots + (n - 1))^{3} + n^{3}$$

Induction

$$= (0 + 1 + \dots + (n - 1))^{2} + n^{3}$$

Algebra

$$= \left(\frac{(n - 1)n}{2}\right)^{2} + n^{3}$$

$$= n^{2} \left(\frac{(n - 1)^{2} + 4n}{4}\right)$$

$$= n^{2} \left(\frac{n^{2} + 2n + 1}{4}\right)$$

$$= n^{2} \left(\frac{(n + 1)^{2}}{4}\right)$$

$$= \left(\frac{n(n + 1)}{2}\right)^{2}$$

$$= (0 + 1 + \dots + n)^{2}$$

9

Form of Induction Proof

- We don't have to start at n = 0!
- Principle of Mathematical Induction (Weak) Let P(k), P(k+1), P(k+2), ... Be a sequence of statements, each of which could be either true or false.
- Show that Base Case P(k) is true
- Show that for any $n \ge k$
 - If P(n) is true (Induction Hypothesis)
 - Then P(n+1) must be true (Induction Step)

If this can be shown, then each P(n) (n $\geq k$) is true

Examples (Try These at Home!)

Show that the angles of any *n*-sided polygon add up to $\pi(n-2)$.

Note: $n \ge 3$, so base case is n=3

Show that if there are at least 6 people at a party, then either there are 3 mutual acquaintances or three mutual strangers.

Base case is n = 6

The induction step should be trivial!

What about Recursion?

- What does induction have to do with recursion?
 - Same form!
 - Base case
 - Inductive case that uses simpler form of problem
- Example: factorial
 - Prove that fact(n) requires n multiplications
 - Base case: n = 0 returns 1, so 0 multiplications
 - Assume for some $n \ge 0$ that fact(n) requires n multiplications.
 - fact(n+1) performs one multiplication: (n+1)*fact(n).
 - We know that fact(n) requires n multiplications.
 - So fact(n+1) requires (exactly) n+1 multiplications.

Recursive contains() for Vector

```
public boolean contains(E elt) {
   return contains(elt, 0, size()-1); }
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
    if (from > to)
        return false; // Base case: empty range
    else
        return elt.equals(elementData[from]) ||
            contains(elt, from+1, to);
}
```

- What's the time complexity of contains?
 - O(to from + I) = O(n) (n is the portion of the array searched)
 - Prove by induction on n
- Often recursive methods on arrays use helper methods
 - They pass a pair of indices as parameters

Design Decision: Chains vs Nodes

- SLL and DLL used a simple Node model
- We could push more of the work down to the "Node" level
- A Chain object contains a value and a reference to "the rest of the chain"
- We can now implement many methods recursively and elegantly
- Uses a "dummy" node for empty chain
 - So an empty Chain is not a null value
- Let's look at some code....

A Proof About Chains

Prove: deleteDuplicates() is correct

- Base Case: n = 0: Empty List is returned ✓
- Induction Hypothesis: For some n ≥ 0, the method is correct
- Induction Step: Show it is correct for n+1

Chain<E> result = rest.deleteDuplicates(); if(rest.contains(value)) return result; else return new Chain<E>(value, result);

- By I.H. result is rest without duplicates
- If statement only includes (first) value if it is not a duplicate of something in rest.

Counting Method Calls

- Example: Fibonacci
 - Prove that for $n \ge 0$ fib(n) makes at least F_n calls to fib(), where F_n is the nth Fibonacci number
 - Base cases: n = 0: | call; n = 1; | call
 - Assume that for some n≥2, fib(n-1) makes at least F_{n-1} calls to fib() and fib(n-2) makes at least F_{n-2} calls to fib().
 - Claim: Then fib(n) makes at least F_n calls to fib()
 - I initial call: fib(n)
 - By induction: At least fib(n-1) calls for fib(n-1)
 - And as least fib(n-2) calls for fib(n-2)
 - Total: I + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls
 - Note: Need two base cases!
 - One can show by induction that for n > 10: fib(n) > (1.5)ⁿ
 - Thus the number of calls grows exponentially!

Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)

Let P_0 , P_1 , P_2 , ... Be a sequence of statements, each of which could be either true or false. Suppose that

I. P_0 and P_1 are true, and

2. For all $n \ge 2$, if P_{n-1} and P_{n-2} are true, then so is P_n .

Then all of the statements are true!

Other versions:

- Can have k > 2 base cases
- Doesn't need to start at 0

Example: Binary Search

- Given an array a[] of positive integers in increasing order, and an integer x, find location of x in a[].
 - Take "indexOf" approach: return -1 if x is not in a[]

Binary Search takes O(log n) Time

Can we use induction to prove the following?

- Claim: If n = high low + 1, then recBinSearch performs at most c (1 + log n) operations, where c is twice the number of statements in recBinSearch
- Base case: n = 1: Then low = high so only c statements execute (method runs twice) and c ≤ c(1+log 1)
- Assume that claim holds for some n ≥ 1, does it hold for n+1? [Note: n+1 > 1, so low < high]
- Problem: Recursive call is *not* on n---it's on n/2.
- Solution: We need a better version of the PMI....

Strong Mathematical Induction

Principle of Mathematical Induction (Strong) Let P(0), P(1), P(2), ... Be a sequence of statements, each of which could be either true or false. Suppose that, for some $a \ge 0$

- I. P(0), P(1), ..., P(a) are true, and
- 2. For every $n \ge a$, if P(1), P(2), ..., P(n) are true, then so is P(n+1).

Then all of the statements are true!

Form of Strong Induction Proof

Principle of Mathematical Induction (Strong)

Let P(0), P(1), P(2), ... Be a sequence of statements, each of which could be either true or false.

- Show that Base Cases P(0), P(1), ... P(a) are true
- Show that for any $n \ge a$
 - If P(0), P(1), ... P(n) are true (Induction Hypothesis)
 - Then P(n+1) must be true (Induction Step)

If this can be shown, then each P(n) (n ≥ 0) is true

Binary Search takes O(log n) Time

Try again now:

- Assume that for some n ≥ 1, the claim holds for all k
 ≤ n, does claim hold for n+1?
- Yes! Either
 - x = a[mid], so a constant number of operations are performed, or
 - RecBinSearch is called on a sub-array of size n/2, and by induction, at most c(1 + log (n/2)) operations are performed.
 - This gives a total of at most c + c(1 + log(n/2)) = c + c(log(2) + log(n/2)) = c + c(log n) = c(1 + log n) statements