CSCI 136

Data Structures \&
 Advanced Programming

Lecture II
Fall 2017
Instructors: Bills

Administrative Details

- Lab 4 will be available online this afternoon
- Partner? Submit I folder
- Problem Set I due Thursday by II:00pm
- In Instructor cubby outside of TCL 303

Last Time

- Comparing Complexity of List Operations on Vectors and Linked Lists
- Recursion and Induction

Today's Outline

- More about Mathematical Induction
- For algorithm run-time and correctness
- More About Recursion
- Recursion on arrays; helper methods
- Recursion on Chains
- Strong Induction
- Linear and Binary Searching review

Mathematical Induction

Principle of Mathematical Induction (Weak)
Let $P(0), P(I), P(2), \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that

1. $P(0)$ is true, and
2. For all $n \geq 0$, if $P(n)$ is true, then so is $P(n+l)$.

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all $n>0$, if $P(n-I)$ is true, then so is $P(n)$. Apology: I do this a lot, as you'll see on future slides!

Form of Induction Proof

Principle of Mathematical Induction (Weak)
Let $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \mathrm{P}(2), \ldots$ Be a sequence of statements, each of which could be either true or false.

- Show that Base Case $P(0)$ is true
- Show that for any $\mathrm{n} \geq 0$
- If $P(n)$ is true (Induction Hypothesis)
- Then $\mathrm{P}(\mathrm{n}+\mathrm{I})$ must be true (Induction Step)

If this can be shown, then each $P(n)(n \geq 0)$ is true

Mathematical Induction

- Prove: $\sum_{i=0}^{n} 2^{i}=2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$
- Prove: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$

Proof: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$

Base case: $\mathrm{n}=0$

- LHS: $0^{3}=0$
- RHS: $(0)^{2}=0 \checkmark$

Induction Hypothesis: Assume that for some n
>0,

$$
0^{3}+1^{3}+\ldots+(n-1)^{3}=(0+1+\ldots+(n-1))^{2}
$$

Induction Step: Show that

$$
0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots n)^{2}
$$

Proof: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$
Note: I'm just doing the induction step: $\mathrm{n}-1 \rightarrow \mathrm{n}$ version

$$
\begin{aligned}
0^{3}+1^{3}+\ldots+n^{3} & =\left(0^{3}+1^{3}+\ldots+(n-1)^{3}+n^{3}\right. \\
\text { Induction } & =(0+1+\ldots+(n-1))^{2}+n^{3} \\
\text { Algebra } & =\left(\frac{(n-1) n}{2}\right)^{2}+n^{3} \\
& =n^{2}\left(\frac{(n-1)^{2}+4 n}{4}\right) \\
& =n^{2}\left(\frac{n^{2}+2 n+1}{4}\right) \\
& =n^{2}\left(\frac{(n+1)^{2}}{4}\right) \\
& =\left(\frac{n(n+1)}{2}\right)^{2} \\
& =(0+1+\cdots+n)^{2}
\end{aligned}
$$

Form of Induction Proof

We don't have to start at $\mathrm{n}=0$!
Principle of Mathematical Induction (Weak)
Let $\mathrm{P}(\mathrm{k}), \mathrm{P}(\mathrm{k}+1), \mathrm{P}(\mathrm{k}+2), \ldots$... Be a sequence of statements, each of which could be either true or false.

- Show that Base Case $P(k)$ is true
- Show that for any $\mathrm{n} \geq \mathrm{k}$
- If $\mathrm{P}(\mathrm{n})$ is true (Induction Hypothesis)
- Then $\mathrm{P}(\mathrm{n}+\mathrm{I})$ must be true (Induction Step)

If this can be shown, then each $P(n)(n \geq k)$ is true

Examples (Try These at Home!)

Show that the angles of any n-sided polygon add up to $\pi(n-2)$.

Note: $n \geq 3$, so base case is $n=3$

Show that if there are at least 6 people at a party, then either there are 3 mutual acquaintances or three mutual strangers.

Base case is $\mathrm{n}=6$
The induction step should be trivial!

What about Recursion?

- What does induction have to do with recursion?
- Same form!
- Base case
- Inductive case that uses simpler form of problem
- Example: factorial
- Prove that $\operatorname{fact}(\mathrm{n})$ requires n multiplications
- Base case: $\mathrm{n}=0$ returns I, so 0 multiplications
- Assume for some $n \geq 0$ that fact(n) requires n multiplications.
- fact $(n+1)$ performs one multiplication: $(n+I)^{*} f a c t(n)$.
- We know that fact(n) requires n multiplications.
- So fact $(\mathrm{n}+\mathrm{I})$ requires (exactly) $\mathrm{n}+\mathrm{I}$ multiplications.

Recursive contains() for Vector

```
public boolean contains(E elt) {
    return contains(elt, 0, size()-1); }
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
    if (from > to)
        return false; // Base case: empty range
    else
        return elt.equals(elementData[from]) ||
                        contains(elt, from+1, to);
}
```

- What's the time complexity of contains?
- $O($ to - from $+I)=O(n)(n$ is the portion of the array searched $)$
- Prove by induction on n
- Often recursive methods on arrays use helper methods
- They pass a pair of indices as parameters

Design Decision: Chains vs Nodes

- SLL and DLL used a simple Node model
- We could push more of the work down to the "Node" level
- A Chain object contains a value and a reference to "the rest of the chain"
- We can now implement many methods recursively and elegantly
- Uses a "dummy" node for empty chain
- So an empty Chain is not a null value
- Let's look at some code....

A Proof About Chains

Prove: deleteDuplicates() is correct

- Base Case: $\mathrm{n}=0$: Empty List is returned \checkmark
- Induction Hypothesis: For some $\mathrm{n} \geq 0$, the method is correct
- Induction Step: Show it is correct for $\mathrm{n}+\mathrm{I}$

```
Chain<E> result = rest.deleteDuplicates();
if(rest.contains(value)) return result;
else return new Chain<E>(value, result);
```

- By I.H. result is rest without duplicates
- If statement only includes (first) value if it is not a duplicate of something in rest. \checkmark

Counting Method Calls

- Example: Fibonacci
- Prove that for $n \geq 0$ fib(n) makes at least F_{n} calls to fib(), where F_{n} is the $n^{\text {th }}$ Fibonacci number
- Base cases: $\mathrm{n}=0$: I call; $\mathrm{n}=\mathrm{I}$; I call
- Assume that for some $n \geq 2$, fib(n - I) makes at least F_{n-1} calls to fib() and fib($n-2$) makes at least F_{n-2} calls to fib().
- Claim: Then fib(n) makes at least F_{n} calls to fib()
- I initial call: fib(n)
- By induction: At least fib(n-I) calls for fib(n-I)
- And as least fib(n-2) calls for fib(n-2)
- Total: $I+f i b(n-I)+f i b(n-2)>f i b(n-I)+f i b(n-2)=f i b(n)$ calls
- Note: Need two base cases!
- One can show by induction that for $\mathrm{n}>10$: fib(n) $>(1.5)^{\mathrm{n}}$
- Thus the number of calls grows exponentially!

Mathematical Induction: Version 2

Principle of Mathematical Induction (Weak)
Let $P_{0}, P_{1}, P_{2}, \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that
I. P_{0} and P_{1} are true, and
2. For all $n \geq 2$, if P_{n-1} and P_{n-2} are true, then so is P_{n}.

Then all of the statements are true!
Other versions:

- Can have k > 2 base cases
- Doesn't need to start at 0

Example: Binary Search

- Given an array a[] of positive integers in increasing order, and an integer x, find location of x in $a[]$.
- Take "indexOf" approach: return -I if x is not in a[]

```
protected static int recBinarySearch(int a[], int value,
    int low, int high) {
    if (low > high) return -1;
    else {
        int mid = (low + high) / 2; //find midpoint
        if (a[mid] == value) return mid; //first comparison
            //second comparison
    else if (a[mid] < value) //search upper half
    return recBinarySearch(a, value, mid + 1, high);
        else
                            //search lower half
        return recBinarySearch(a, value, low, mid - 1);
```

 \}

Binary Search takes $O(\log n)$ Time

Can we use induction to prove the following?

- Claim: If $\mathrm{n}=$ high - low + I, then recBinSearch performs at most c $(I+\log n)$ operations, where c is twice the number of statements in recBinSearch
- Base case: $\mathrm{n}=\mathrm{I}$: Then low = high so only c statements execute (method runs twice) and $\mathrm{c} \leq$ c ($1+\log \mathrm{I})$
- Assume that claim holds for some $\mathrm{n} \geq \mathrm{I}$, does it hold for $\mathrm{n}+\mathrm{I}$? [Note: $\mathrm{n}+\mathrm{I}>$ I, so low < high]
- Problem: Recursive call is not on $n---i t ' s$ on $n / 2$.
- Solution: We need a better version of the PMI....

Strong Mathematical Induction

Principle of Mathematical Induction (Strong)
Let $P(0), P(I), P(2), \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that, for some $\mathrm{a} \geq 0$
I. $P(0), P(I), \ldots, P(a)$ are true, and
2. For every $\mathrm{n} \geq \mathrm{a}$, if $\mathrm{P}(\mathrm{I}), \mathrm{P}(2), \ldots, \mathrm{P}(\mathrm{n})$ are true, then so is $\mathrm{P}(\mathrm{n}+\mathrm{l})$.
Then all of the statements are true!

Form of Strong Induction Proof

Principle of Mathematical Induction (Strong)
Let $P(0), P(I), P(2), \ldots$ Be a sequence of statements, each of which could be either true or false.

- Show that Base Cases $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \ldots \mathrm{P}(\mathrm{a})$ are true
- Show that for any $\mathrm{n} \geq \mathrm{a}$
- If $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \ldots \mathrm{P}(\mathrm{n})$ are true (Induction Hypothesis)
- Then $\mathrm{P}(\mathrm{n}+\mathrm{I})$ must be true (Induction Step)

If this can be shown, then each $P(n)(n \geq 0)$ is true

Binary Search takes $\mathrm{O}(\log n)$ Time

Try again now:

- Assume that for some $\mathrm{n} \geq \mathrm{I}$, the claim holds for all k $\leq \mathrm{n}$, does claim hold for $\mathrm{n}+\mathrm{I}$?
- Yes! Either
- $x=a[m i d]$, so a constant number of operations are performed, or
- RecBinSearch is called on a sub-array of size $n / 2$, and by induction, at most $c(l+\log (n / 2))$ operations are performed.
- This gives a total of at most $\mathrm{c}+\mathrm{c}(1+\log (\mathrm{n} / 2))=\mathrm{c}+\mathrm{c}(\log (2)+$ $\log (n / 2))=c+c(\log n)=c(1+\log n)$ statements

