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Administrative Details

• Lab 4 will be available online this afternoon
• Partner? Submit 1 folder

• Problem Set 1 due Thursday by 11:00pm
• In Instructor cubby outside of TCL 303
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Last Time

• Comparing Complexity of List Operations on 
Vectors and Linked Lists

• Recursion and Induction



Today�s Outline

• More about Mathematical Induction
• For algorithm run-time and correctness

• More About Recursion
• Recursion on arrays; helper methods
• Recursion on Chains

• Strong Induction
• Linear and Binary Searching review
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Mathematical Induction

Principle of Mathematical Induction (Weak)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. Suppose 
that

1. P(0) is true, and
2. For all n ≥ 0, if P(n) is true, then so is P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all n > 0, if P(n-1) is true, then so is P(n).

Apology: I do this a lot, as you’ll see on future slides!



Form of Induction Proof

Principle of Mathematical Induction (Weak)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. 

• Show that Base Case P(0) is true
• Show that for any n ≥ 0
• If P(n) is true (Induction Hypothesis)
• Then P(n+1) must be true (Induction Step)

If this can be shown, then each P(n) (n≥0) is true



Mathematical Induction

• Prove:

• Prove:  
€ 

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€ 

03 +13 + ...+ n3 = (0 +1+ ...+ n)2



0" + 1" +	…+	'" = (0 + 1 +	… 	')+

Proof:

€ 

03 +13 + ...+ n3 = (0 +1+ ...+ n)2
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Base case: n = 0
• LHS: 03 = 0
• RHS: (0)2 = 0 �
Induction Hypothesis:  Assume that for some n 
> 0, 

0" + 1" +	…+	(' − 1)"= (0 + 1 +	…+ n − 1 )+

Induction Step:  Show that



0" + 1" +	…+	'" = (0" + 1" +	…+	(' − 1)" + '"
= (0 + 1 +	…+ n − 1 )++ '"

= ' − 1 '
2

+
+ '"

= '+ (' − 1)++4'
4

= '+ '+ + 2' + 1
4

= '+ (' + 1)+
4

= '(' + 1)
2

+

= (0 + 1 +⋯+ ')+

Proof:

€ 

03 +13 + ...+ n3 = (0 +1+ ...+ n)2
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Induction�

Note: I’m just doing the induction step: n-1 à n version 

Algebra�



Form of Induction Proof

We don’t have to start at n = 0!
Principle of Mathematical Induction (Weak)

Let P(k), P(k+1), P(k+2), ... Be a sequence of 
statements, each of which could be either true or 
false. 

• Show that Base Case P(k) is true
• Show that for any n ≥ k
• If P(n) is true (Induction Hypothesis)
• Then P(n+1) must be true (Induction Step)

If this can be shown, then each P(n) (n≥k) is true



Examples (Try These at Home!)

Show that the angles of any n-sided polygon add 
up to 1 ' − 2 .

Note: n	≥	3, so base case is n=3

Show that if there are at least 6 people at a 
party, then either there are 3 mutual 
acquaintances or three mutual strangers.

Base case is n = 6
The induction step should be trivial!



What about Recursion?

• What does induction have to do with recursion?
• Same form!

• Base case
• Inductive case that uses simpler form of problem

• Example: factorial
• Prove that fact(n) requires n multiplications

• Base case: n = 0 returns 1, so 0 multiplications
• Assume for some n ≥ 0 that fact(n) requires n multiplications.

• fact(n+1) performs one multiplication: (n+1)*fact(n).
• We know that fact(n) requires n multiplications.
• So fact(n+1) requires (exactly) n+1 multiplications.



Recursive contains() for Vector
public boolean contains(E elt) {

return contains(elt, 0, size()-1); }

// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {

if (from > to)
return false; // Base case: empty range

else
return elt.equals(elementData[from]) ||

contains(elt, from+1, to);
}

• What’s the time complexity of contains?
• O(to – from + 1) = O(n) (n is the portion of the array searched)
• Prove by induction on n

• Often recursive methods on arrays use helper methods
• They pass a pair of indices as parameters



Design Decision: Chains vs Nodes
• SLL and DLL used a simple Node model
• We could push more of the work down to 

the “Node” level
• A Chain object contains a value and a 

reference to “the rest of the chain”
• We can now implement many methods 

recursively and elegantly
• Uses a “dummy” node for empty chain
• So an empty Chain is not a null value

• Let’s look at some code....



A Proof About Chains
Prove: deleteDuplicates() is correct

• Base Case: n = 0: Empty List is returned �
• Induction Hypothesis: For some n ≥ 0, the 

method is correct
• Induction Step: Show it is correct for n+1

Chain<E> result = rest.deleteDuplicates();
if(rest.contains(value)) return result;
else return new Chain<E>(value, result);

• By I.H. result is rest without duplicates
• If statement only includes (first) value if it is not a 

duplicate of something in rest. �
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Counting Method Calls

• Example: Fibonacci
• Prove that for n≥0 fib(n) makes at least Fn calls to fib(), 

where Fn is the nth Fibonacci number
• Base cases: n = 0: 1 call; n = 1; 1 call
• Assume that for some n≥2, fib(n-1) makes at least Fn-1 calls to fib() 

and fib(n-2) makes at least Fn-2 calls to fib().
• Claim: Then fib(n) makes at least Fn calls to fib()

– 1 initial call: fib(n)
– By induction: At least fib(n-1) calls for fib(n-1)

– And as least fib(n-2) calls for fib(n-2)
– Total: 1 + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

• Note: Need two base cases!
• One can show by induction that for n > 10: fib(n) > (1.5)n

• Thus the number of calls grows exponentially!



Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let P0, P1, P2, ... Be a sequence of statements, each 
of which could be either true or false. Suppose that

1. P0 and P1 are true, and
2. For all n ≥ 2, if Pn-1 and Pn-2 are true, then so is Pn.

Then all of the statements are true!
Other versions:
• Can have k > 2 base cases
• Doesn’t need to start at 0



Example: Binary Search

• Given an array a[] of positive integers in increasing 
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return -1 if x is not in a[]

protected static int recBinarySearch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}



Binary Search takes O(log n) Time

Can we use induction to prove the following?
• Claim: If n = high - low + 1, then recBinSearch

performs at most c (1+ log n) operations, where c is 
twice the number of statements in recBinSearch

• Base case: n = 1: Then low = high so only c 
statements execute (method runs twice) and c ≤
c(1+log 1)

• Assume that claim holds for some n ≥ 1, does it hold 
for n+1? [Note: n+1 > 1, so low < high]

• Problem: Recursive call is not on n---it’s on n/2.

• Solution: We need a better version of the PMI….



Strong Mathematical Induction

Principle of Mathematical Induction (Strong)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. Suppose 
that, for some a ≥ 0

1. P(0), P(1), ... , P(a) are true, and
2. For every n ≥ a, if P(1), P(2), ... , P(n) are true, then so 

is P(n+1).

Then all of the statements are true!



Form of Strong Induction Proof

Principle of Mathematical Induction (Strong)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. 

• Show that Base Cases P(0), P(1), … P(a) are 
true

• Show that for any n ≥ a
• If P(0), P(1), … P(n) are true (Induction 

Hypothesis)
• Then P(n+1) must be true (Induction Step)

If this can be shown, then each P(n) (n≥0) is true



Binary Search takes O(log n) Time

Try again now:
• Assume that for some n ≥ 1, the claim holds for all k 

≤ n, does claim hold for n+1? 

• Yes! Either
• x = a[mid], so a constant number of operations are 

performed, or
• RecBinSearch is called on a sub-array of size n/2, and by 

induction, at most c(1 + log (n/2)) operations are 
performed.
• This gives a total of at most c + c(1 + log(n/2)) = c + c(log(2) + 

log(n/2)) = c + c(log n) = c(1 + log n) statements


